Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 lần 1 năm 2022 - 2023 trường THPT Quảng Xương 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh giỏi môn Toán 12 lần 1 năm học 2022 – 2023 trường THPT Quảng Xương 2, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 lần 1 năm 2022 – 2023 trường THPT Quảng Xương 2 – Thanh Hóa : + Hai chiếc ly đựng chất lỏng giống nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao là 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thư hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1 dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (Độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng – lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01 dm). + Bạn Mai là sinh viên năm cuối chuẩn bị ra trường, nhờ có công việc làm thêm mà Mai có một khoản tiết kiệm nhỏ, Mai muốn gửi tiết kiệm để chuẩn bị mua một chiếc xe máy Honda Lead trị giá 45 triệu đồng để tiện cho công việc. Vì vậy, Mai đã quyết định gửi tiết kiệm theo hình thức lãi kép với lãi suất 0,8%/1 tháng và mỗi tháng Mai đều đặn gửi tiết kiệm một khoản tiền là 3 triệu đồng. Hỏi sau ít nhất bao nhiêu tháng, Mai đủ tiền để mua xe máy? + Cho hình chóp S ABC có đáy ABC là tam giác vuông tại 9 30 3 10 a A AB a AC. Hình chiếu của S trên mặt phẳng (ABC) là điểm H thuộc đoạn thẳng BC. Biết rằng HC HB 2 và 2 2 a SH. Góc giữa mặt phẳng (SAB) và (SAC) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra đội tuyển HSG Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang
Nội dung Đề kiểm tra đội tuyển HSG Toán năm 2021 2022 trường chuyên Vị Thanh Hậu Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng đội tuyển học sinh giỏi môn Toán THPT năm học 2021 – 2022 trường THPT chuyên Vị Thanh, tỉnh Hậu Giang; kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2022; đề thi có đáp án và thang điểm. Trích dẫn đề kiểm tra đội tuyển HSG Toán năm 2021 – 2022 trường chuyên Vị Thanh – Hậu Giang : + Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm chia hết cho 10? + Trong mặt phẳng Oxy, biết một cạnh tam giác có trung điểm là M 1 1; hai cạnh kia nằm trên các đường thẳng 2 6 30 x y và x t 2 t y t. Hãy viết phương trình tham số của cạnh thứ ba của tam giác đó? + Cho hình chóp S ABCD có đáy là hình chữ nhật với AD a 3 AB 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SD và mặt phẳng ABCD bằng 0 45. Tính khoảng cách giữa hai đường thẳng SD và BC.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Kiên Giang
Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 24 và 25 tháng 11 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề chọn học sinh giỏi thành phố lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng
Nội dung Đề chọn học sinh giỏi thành phố lớp 12 môn Toán năm 2021 2022 sở GD ĐT Hải Phòng Bản PDF Thứ Ba ngày 18 tháng 01 năm 2022, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi cấp thành phố lớp 12 môn Toán năm học 2021 – 2022. Đề chọn học sinh giỏi thành phố Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng gồm 01 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn học sinh giỏi thành phố Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Hải Phòng : + Có 15 người xếp thành một hàng dọc (vị trí của mỗi người trong hàng là cố định). Chọn ra 4 người trong hàng. Tính xác suất để 4 người được chọn không có hai người nào đứng cạnh nhau. + Cho hình lăng trụ đứng ABCD A B C D có đáy ABCD là hình thang cân, AD song song với BC, AB BC CD a AD a 2. Góc giữa hai mặt phẳng ACD và ABCD bằng 0 45. a) Tính khoảng cách từ B đến mặt phẳng A CD. b) Gọi P là mặt phẳng đi qua B và vuông góc với đường thẳng A C. Mặt phẳng P chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích khối đa diện chứa đỉnh A. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC không có góc nào tù, nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong của góc A D BC. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C biết rằng A có tung độ âm và 1 5 0 1 1 0 2 B I E. File WORD (dành cho quý thầy, cô):
Đề lập đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Bình Phước
Nội dung Đề lập đội tuyển thi HSG QG môn Toán năm 2021 2022 sở GD ĐT Bình Phước Bản PDF Đề lập đội tuyển thi HSG QG môn Toán năm 2021 – 2022 sở GD&ĐT Bình Phước gồm 02 trang với 07 bài toán dạng tự luận, kỳ thi được diễn ra trong hai ngày: 03/01/2022 và 04/01/2022.