Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Kon Tum

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Kon Tum : + Cho hàm số f(x) = (m – 1)x + 3m + 2 có đồ thị là đường thẳng. Đường thẳng cắt trục hoành tại điểm M, cắt trục tung tại điểm N (các điểm M, N không trùng với gốc tọa độ O). Tìm giá trị của m để tam giác OMN cân. + Hai cửa hàng A và B bán cùng một loại bánh với giá 10000 đồng một cái, nhưng mỗi cửa hàng có hình thức khuyến mãi khác nhau: Cửa hàng A: Đối với 5 cái bánh đầu tiên, mỗi cái bánh có giá là 10000 đồng; đối với 5 cái bánh tiếp theo cửa hàng sẽ giảm 4% giá bán. Kể từ cái bánh thứ 11 với mỗi cái bánh khách hàng chỉ phải trả 72% giá bán. Cửa hàng B: Cứ mua 5 cái bánh thì được tặng 1 cái bánh cùng loại. Bạn An có 250000 đồng, hỏi bạn An nên chọn cửa hàng nào trong hai cửa hàng A và B để mua được nhiều bánh hơn? + Cho hình vuông ABCD có cạnh bằng a. Vẽ đường tròn tâm D, bán kính DA. Từ điểm M thuộc cạnh AB (M không trùng với A và B), vẽ tiếp tuyến MN với đường tròn (D)(N là tiếp điểm), tiếp tuyến này cắt đoạn BC tại H. 1) Tính chu vi tam giác BMH theo a. 2) Xác định vị trí điểm M trên cạnh AB để độ dài đoạn thẳng MH nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Trên bảng có 2022 số tự nhiên khác nhau từ 1 đến số 2022. Lần thứ nhất xóa đi 2 số bất kì và viết tổng của chúng lên bảng, lúc này trên bảng còn 2021 số. Lần thứ hai xóa đi 2 số bất kì và viết tổng của chúng lên bảng và cứ tiếp tục như vậy. Hỏi lần thứ 2021, trên bảng còn lại số nào? + Cho hình vuông cạnh 2a và hai nửa đường tròn bán kính cùng bằng a, tiếp xúc với nhau như hình vẽ. Một đường tròn (I) tiếp xúc với hai nửa đường tròn đã cho và tiếp xúc với cạnh hình vuông. Tính diện tích hình tròn (I). + Cho đường tròn (O) đường kính BC và điểm A di động trên đường tròn (O) (A khác B và C). Gọi H là chân đường vuông góc kẻ từ A đến cạnh BC của tam giác ABC. Gọi D là trung điểm của HC. Qua H kẻ đường thẳng vuông góc với AD cắt AB tại E. a) Chứng minh rằng HD.HE = AD.AH b) Chứng minh rằng B là trung điểm của AE. Tìm quỹ tích điểm E.