Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kỳ 1 Toán 9 năm 2018 - 2019 trường chuyên Trần Đại Nghĩa - TP. HCM

Đề kiểm tra giữa học kỳ 1 Toán 9 năm 2018 – 2019 trường chuyên Trần Đại Nghĩa – TP. HCM mã đề A được biên soạn nhằm kiểm tra chất lượng dạy và học Toán 9 của giáo viên và học sinh nhà trường, kỳ thi được tổ chức vào ngày 10/10/2018, đề thi gồm 1 trang với 6 bài toán tự luận, học sinh có 90 phút để hoàn thành đề thi này. Trích dẫn đề kiểm tra giữa học kỳ 1 Toán 9 năm 2018 – 2019 trường chuyên Trần Đại Nghĩa – TP. HCM : + Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH và trung tuyến AM. Gọi D là điểm đối xứng của A qua M. 1) Chứng minh rằng: tứ giác ABDC là hình chữ nhật và CD = BH.BC. 2) Đường thẳng AH cắt hai đường thẳng BD, CD lần lượt tại T, Q. Gọi P là giao điểm của hai đường thẳng CT và BQ. Chứng minh rằng: BH.BC = BP.BQ và hai tam giác BAP, BQA đồng dạng. 3) Cho AB = 3cm, AC = 4cm. Tính diện tích tứ giác ABQC. + Một chiếc ti vi hình chữ nhật màn hình phẳng 75 inch (đường chéo ti vi dài 75 inch) có góc tạo bởi chiều dài và đường chéo là 36°52′. Hỏi chiếc ti vi ấy có chiều dài, chiều rộng là ba nhiêu cm. Biết 1 inch = 2,54 cm. (Kết quả tính làm tròn đến chữ số thập phân thứ nhất).

Nguồn: toanmath.com

Đọc Sách

Đề giữa học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Lê Quý Đôn - Quảng Nam
Đề giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Lê Quý Đôn – Quảng Nam gồm 15 câu trắc nghiệm (05 điểm) và 03 câu tự luận (05 điểm), thời gian làm bài 60 phút, đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề A – mã đề B. Trích dẫn đề giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Lê Quý Đôn – Quảng Nam : + Cho ∆ABC vuông tại A, AH là đường cao. Biết BH = 2cm, HC = 6 cm a) Tính độ dài AH, AB. b) Tính sinB; tanC. c) Gọi M là điểm bất kỳ trên cạnh AC (M khác A và M khác C). Hạ AI vuông góc với BM (I thuộc BM). Chứng minh ∆BIC đồng dạng ∆BHM. + Cho ∆ABC vuông tại A đường cao AH. Biết AB = 6cm, BC = 10cm. Độ dài đường cao AH là? + Cho tam giác vuông có hai góc nhọn α và β. Biểu thức nào sau đây không đúng?
Đề giữa học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Nguyễn Du - Quảng Nam
Đề giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Nguyễn Du – Quảng Nam gồm 15 câu trắc nghiệm (05 điểm) và 03 câu tự luận (05 điểm), thời gian làm bài 60 phút, đề thi có đáp án trắc nghiệm và hướng dẫn giải tự luận mã đề A – mã đề B. Trích dẫn đề giữa học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Nguyễn Du – Quảng Nam : + Cho tam giác MNP vuông tại M, biết MN = 5 cm, NP = 13 cm a/ Giải tam giác vuông MNP b/ Vẽ đường cao MD, gọi A, B theo thứ tự là hình chiếu của D trên MN và MP. Chứng minh rằng: MA.MN = MB.MP = ND.DP. + Cho tam giác ABC vuông tại A, đường cao AH. Hệ thức nào sao đây sai? A. AB.BC = AC.AH B. AB2 = BC.BH C. AC2 = HC.BC D. AH2 = HB.HC. + Tam giác ABC vuông tại A, AH là đường cao. Độ dài của đoạn thẳng AB bằng A. BH.BC B. BH BC. C. HB.HC D. HB.HC.
Đề giữa học kì 1 Toán 9 năm 2021 - 2022 trường THCS Đặng Tấn Tài - TP HCM
Đề giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Đặng Tấn Tài, thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 60 phút.
Đề kiểm tra giữa học kì 1 Toán 9 năm 2021 - 2022 trường THCS Tô Hoàng - Hà Nội
Đề kiểm tra giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Tô Hoàng – Hà Nội gồm 05 câu tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào thứ Tư ngày 03 tháng 11 năm 2021, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề kiểm tra giữa học kì 1 Toán 9 năm 2021 – 2022 trường THCS Tô Hoàng – Hà Nội : + Để đo chiều rộng AB của một khúc sông mà không đo trực tiếp được, một người đi từ A đến C đo được AC = 50m và từ C nhìn thấy B với một góc nghiệng 62o với bờ sông (như hình vẽ). Tính chiều rộng AB của khúc sông (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là tia phân giác của HAB a/Tính các cạnh AH, AC biết HB = 18cm, HC = 8cm b/ Chứng minh ADC cân tại C và DH AH AC BD AB BC. c/ Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh 2 2 S S 1 cos B sin C. + Cho biểu thức x x x 2 x P x 2 x 2 x 4 và x 2 Q x 2 với x x 0 4 a/ Tính giá trị biểu thức Q khi x = 9 b/ Rút gọn P c/ Cho P M Q. Tìm tất cả các giá trị nguyên của x để 1.