Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Sơn La

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sơn La; kỳ thi được diễn ra vào thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Sơn La : + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình y = 2x − a2 và parabol (P) có phương trình: y = ax2 (a > 0). a) Tìm a để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó A và B nằm bên phải trục tung. b) Gọi xA, xB là hoành độ của A và B. Tìm giá trị nhỏ nhất của biểu thức: T = 4/(xA + xB) + 1/xA.xB. + Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi BD và CE là hai đường cao của ABC. Gọi R là giao điểm của BD với (O) (R khác điểm B), S là giao điểm của CE với (O) (S khác điểm C). Tia AO cắt BC tại M và cắt cung nhỏ BC tại N. Tia BO cắt AC tại P. Tia CO cắt AB tại F. a) Chứng minh: Tam giác ADE đồng dạng với tam giác ABC. b) Chứng minh: DE // SR và AN là tia phân giác của góc SAR. c) Chứng minh: MB.MC/MA2 + PC.PA/PB2 + FA.FB/FC2 = 1 + Xét 100 số tự nhiên liên tiếp 1, 2, 3, …, 100. Gọi A là số thu được bằng cách sắp một cách tùy ý 100 số đó thành một dãy, B là số thu được bằng cách đặt một cách tùy ý các dấu cộng vào giữa các chữ số của A. Chứng minh rằng cả A và B cùng không chia hết cho 2046.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Dương
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho 40 số nguyên dương thay đổi sao cho có tổng bằng 58. Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng các bình phương của chúng. + Giả sử ba số thực a, b, c thỏa mãn điều kiện a > 0, bc = 3a, a + b + c = abc. Chứng minh rằng: a21 + 213. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K L lần lượt là hình chiếu vuông góc của E, F trên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J trên BC. a) Chứng minh rằng HJ là phân giác của góc EHF. b) Ký hiệu S1, S2 lần lượt là diện tích của tứ giác BFJL và CEJK. Chứng minh rằng: BP2 V 5 CE. c) Gọi D là trung điểm cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thái Nguyên gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.