Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Long Biên Hà Nội

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Long Biên Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra cuối học kì 1 môn Toán lớp 9 năm 2021 - 2022 tại phòng GD&ĐT Long Biên Hà Nội Đề kiểm tra cuối học kì 1 môn Toán lớp 9 năm 2021 - 2022 tại phòng GD&ĐT Long Biên Hà Nội Vào ngày Thứ Năm, 23 tháng 12 năm 2021, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội đã tổ chức kỳ thi khảo sát chất lượng môn Toán cho học sinh khối lớp 9 vào giai đoạn cuối của học kì 1 năm học 2021 - 2022. Đề kiểm tra cuối học kì 1 môn Toán lớp 9 năm 2021 - 2022 tại phòng GD&ĐT Long Biên - Hà Nội bao gồm 05 trang với tổng cộng 40 câu hỏi trắc nghiệm. Thời gian làm bài cho học sinh là 90 phút, và đề thi đi kèm với đáp án để học sinh có thể tự kiểm tra kết quả sau khi hoàn thành bài kiểm tra. Dưới đây là một số câu hỏi mẫu trong đề kiểm tra cuối học kì 1 môn Toán lớp 9 năm 2021 - 2022 tại phòng GD&ĐT Long Biên - Hà Nội: Tâm đường tròn nội tiếp tam giác là: A. Giao điểm của ba đường trung trực của tam giác. B. Giao điểm của ba đường trung tuyến của tam giác. C. Giao điểm của ba đường phân giác của tam giác. D. Giao điểm của ba đường cao của tam giác. Cho tam giác ABC cân tại A, đường cao AH. Đường vuông góc với AC tại C cắt đường thẳng AH ở D. Các điểm nào sau đây cùng thuộc một đường tròn? Cho nửa đường tròn O đường kính AB. Từ điểm M trên nửa đường tròn (M khác A B) vẽ tiếp tuyến với nửa đường tròn, cắt các tiếp tuyến tại A và B lần lượt tại C và D. Khi đó MC MD bằng? Cho tam giác ABC vuông tại C nội tiếp đường tròn O R có AC R. Gọi K là trung điểm của dây cung BC tiếp tuyến tại B của đường tròn O cắt tia OK tại điểm D nối C với D. Chọn khẳng định sai trong các khẳng định sau? Cho hai số thực m và n không âm thỏa mãn điều kiện \(2\sqrt{mn} \leq m + n + 1\). Giá trị lớn nhất của biểu thức \(\frac{3}{m+1} + \frac{1}{n+1}\) là bao nhiêu? Đề kiểm tra này giúp học sinh tự kiểm tra kiến thức đã học và chuẩn bị cho kỳ thi cuối kì sắp tới. Hy vọng rằng các em đã làm tốt bài kiểm tra và đạt được kết quả cao.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm 2017 - 2018 phòng GDĐT Vĩnh Yên - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm 2017 – 2018 phòng GD&ĐT Vĩnh Yên – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án + lời giải chi tiết.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Đề kiểm tra HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề kiểm tra HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Đống Đa - Hà Nội
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 15 tháng 12 năm 2017.