Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

46 bài tập lãi suất - tăng trưởng có đáp án và lời giải chi tiết

Tài liệu gồm 26 trang, được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC, tuyển tập 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 46 bài tập lãi suất – tăng trưởng có đáp án và lời giải chi tiết: + Ông Nam gửi vào ngân hàng 100 triệu đồng theo phương thức lãi đơn, với lãi suất 5% trên một năm. Hỏi sau 5 năm số tiền ông Nam nhận được cả vốn lẫn lãi là bao nhiêu? A. 125 triệu. B. 120 triệu. C. 130 triệu. D. 128 triệu. + Chị Hằng gửi ngân hàng 3350000 đồng theo phương thức lãi đơn, với lãi suất 4% trên nửa năm. Hỏi ít nhất bao lâu chị rút được cả vốn lẫn lãi là 4020000 đồng? A. 5 năm. B. 30 tháng. C. 3 năm. D. 24 tháng. + Ông Bình gửi vào ngân hàng 50 triệu đồng theo phương thức lãi đơn, với lãi suất lãi suất 3% trên nửa năm. Hỏi sau 5 năm số tiền lãi mà ông Bình nhận được là bao nhiêu? A. 15 triệu. B. 65 triệu. C. 7,5 triệu. D. 57,5 triệu. + Bác Lan gửi 1500 USD với lãi suất đơn cố định theo quý. Sau 3 năm, số tiền bác ấy nhận được cả gốc lẫn lãi là 2320 USD. Hỏi lãi suất tiết kiệm là bao nhiêu một quý? (làm tròn đến hàng phần nghìn). A. 0,182. B. 0,046. C. 0,015. D. 0,037. + Tính theo phương thức lãi đơn; để sau 2 năm ông Bình rút được cả vốn lẫn lãi số tiền là 91.220.800 đồng với lãi suất 1,7% một quý thì ông Bình phải gửi tiết kiệm số tiền bao nhiêu? A. 79.712.468 đồng. B. 88.221.276 đồng. C. 88.221.277 đồng. D. 80.300.000 đồng.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC phương pháp tọa độ trong không gian
Tài liệu gồm 65 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương pháp tọa độ trong không gian, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương pháp tọa độ trong không gian: CHỦ ĐỀ 1 . HỆ TỌA ĐỘ TRONG KHÔNG GIAN. Dạng 1: Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Dạng 2: Tích có hướng. Dạng 3: Ứng dụng của tích có hướng để tính diện tích và thể tích. Dạng 4: Phương trình mặt cầu. CHỦ ĐỀ 2 . PHƯƠNG TRÌNH MẶT PHẲNG. Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị. CHỦ ĐỀ 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.
Các dạng bài tập VDC phương trình đường thẳng
Tài liệu gồm 34 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình đường thẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình đường thẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình đường thẳng. + Vectơ chỉ phương của đường thẳng. + Phương trình tham số của đường thẳng. + Phương trình chính tắc. 2. Khoảng cách. + Khoảng cách từ điểm đến đường thẳng. + Khoảng cách giữa hai đường thẳng chéo nhau. 3. Vị trí tương đối. + Vị trí tương đối giữa hai đường thẳng. + Vị trí tương đối giữa đường thẳng và mặt phẳng. + Vị trí tương đối giữa đường thẳng và mặt cầu. 4. Góc. + Góc giữa hai đường thẳng. + Góc giữa đường thẳng và mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Viết phương trình đường thẳng. Dạng 2: Viết phương trình đường thẳng bằng phương pháp tham số hóa. Dạng 3: Góc giữa đường thẳng và mặt phẳng. Dạng 4: Góc giữa hai đường thẳng. Dạng 5: Khoảng cách từ một điểm đến đường thẳng. Dạng 6: Khoảng cách giữa hai đường thẳng chéo nhau. Dạng 7: Vị trí tương đối giữa đường thẳng và mặt phẳng. Dạng 8: Vị trí tương đối giữa hai đường thẳng. Dạng 9: Vị trí tương đối giữa đường thẳng và mặt cầu. Dạng 10: Một số bài toán cực trị.
Các dạng bài tập VDC phương trình mặt phẳng
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) phương trình mặt phẳng, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC phương trình mặt phẳng: A. LÍ THUYẾT TRỌNG TÂM 1. Phương trình mặt phẳng. 2. Khoảng cách từ một điểm tới mặt phẳng. 3. Vị trí tương đối. 4. Góc giữa hai mặt phẳng. B. CÁC DẠNG BÀI TẬP Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng. Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu. Dạng 3: Phương trình mặt phẳng đoạn chắn. Dạng 4: Vị trí tương đối giữa hai mặt phẳng. Dạng 5: Vị trí tương đối giữa mặt cầu và mặt phẳng. Dạng 6: Khoảng cách từ một điểm đến mặt phẳng. Dạng 7: Góc giữa hai mặt phẳng. Dạng 8: Một số bài toán cực trị.
Các dạng bài tập VDC hệ tọa độ trong không gian
Tài liệu gồm 12 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) hệ tọa độ trong không gian, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 3 (phương pháp tọa độ trong không gian Oxyz) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC hệ tọa độ trong không gian: A. LÍ THUYẾT TRỌNG TÂM 1. Hệ tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của một điểm. 4. Tích có hướng của hai vectơ. 5. Phương trình mặt cầu. B. CÁC DẠNG BÀI TẬP Dạng 1: Tìm tọa độ điểm, vectơ trong hệ trục Oxyz. Dạng 2: Tích có hướng. Dạng 3: Ứng dụng của tích có hướng để tính diện tích và thể tích. Dạng 4: Phương trình mặt cầu.