Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học giới hạn của hàm số - Nguyễn Trọng

Tài liệu gồm 87 trang được biên soạn bởi thầy Nguyễn Trọng, hướng dẫn tự học chuyên đề giới hạn của hàm số, thuộc chương trình Đại số và Giải tích 11 (Toán 11) chương 4 bài số 2. Tài liệu bao gồm: Tóm tắt các định nghĩa, định lý, công thức liên quan đến giới hạn của hàm số; phân loại 5 dạng toán giới hạn của hàm số điển hình kèm phương pháp giải, ví dụ minh họa có lời giải, bài tập rèn luyện có đáp số. Khái quát nội dung tài liệu tự học giới hạn của hàm số – Nguyễn Trọng: A. TÓM TẮT LÝ THUYẾT + Định nghĩa 1: Giới hạn của hàm số tại một điểm. + Định nghĩa 2: Giới hạn của hàm số tại vô cực. B. DẠNG TOÁN VÀ BÀI TẬP Dạng 1 . Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức là các đa thức. Khử dạng vô định bằng cách phân tích thành tích bằng cách chia Hooc – nơ (đầu rơi, nhân tới, cộng chéo), rồi sau đó đơn giản biểu thức để khử dạng vô định. Dạng 2 . Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức có chứa căn thức. Nhân lượng liên hợp để khử dạng vô định. [ads] Dạng 3 . Giới hạn của hàm số khi x → ∞. + Đối với dạng đa thức không căn, ta rút bậc cao và áp dụng công thức khi x → ∞. + Đối với dạng phân số không căn, ta làm tương tự như giới hạn dãy số, tức rút bậc cao nhất của tử và mẫu, sau đó áp dụng công thức trên. + Ngoài việc đưa ra khỏi căn bậc chẵn cần có trị tuyệt đối, học sinh cần phân biệt khi nào đưa ra ngoài căn, khi nào liên hợp. Phương pháp suy luận cũng tương tự như giới hạn của dãy số, nhưng cần phân biệt khi x → +∞ hoặc x → −∞. Dạng 4 . Giới hạn một bên x → x0+ hoặc x → x0−. Sử dụng các định lý về giới hạn hàm số. Dạng 5 . Giới hạn của hàm số lượng giác. + Sử dụng các định lý về giới hạn hàm số. + Sử dụng các công thức biến đổi lượng giác.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn tập chủ đề giới hạn - Phùng Hoàng Em
Tài liệu gồm 9 trang được sưu tầm và biên soạn bởi thầy Phùng Hoàng Em tuyển chọn các bài tập trắc nghiệm (có đáp án) và tự luận chủ đề giới hạn. Tài liệu giúp học sinh ôn tập chuẩn bị cho đợt kiểm tra Đại số và Giải tích 11 chương 4. Trích dẫn tài liệu : + Để trang hoàng cho căn hộ của mình, bạn An quết định tô màu một miếng bìa hình vuông cạnh bằng 1. Bạn ấy tô màu đỏ các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3, …, n, …, trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quy trình tô màu của An có thể tiến ra vô hạn. Hỏi bạn An tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô nhỏ hơn 1/1000? [ads] + Cho a, b, c là các số thực. Chứng minh phương trình ab(x − a)(x − b) + bc(x − b)(x − c) + ca(x − c)(x − a) = 0 luôn có nghiệm với mọi a, b, c. + Cho 3 số thực a, b, c thoả 5a + 4b + 6c = 0. Chứng minh phương trình ax^2 + bx + c = 0 luôn có nghiệm.
Chuyên đề giới hạn có đáp án và lời giải chi tiết - Đặng Việt Đông
Chuyên đề giới hạn có đáp án và lời giải chi tiết – Đặng Việt Đông gồm 136 trang, cuốn chuyên đề là tài liệu hữu ích cho kỳ thi THPT Quốc gia năm học 2017 – 2018 khi trong đề thi Toán năm nay có bổ sung kiến thức chương trình Toán 11. Phần I – Đề bài Giới hạn dãy số + Dạng 1. Tính giới hạn bằng định nghĩa + Dạng 2. Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Giới hạn hàm số + Dạng 1. Tính giới hạn dạng bằng định nghĩa hoặc tại một điểm + Dạng 2. Tính giới hạn dạng vô định 0/0 [ads] + Dạng 3. Tính giới hạn dạng vô định ∞/∞ + Dạng 4. Giới hạn mộ bên và các dạng vô định khác + Dạng 5 . Giới hạn lượng giác Hàm số liên tục + Dạng 1. Tính liên tục của hàm số tại một điểm + Dạng 2. Tính liên tục của hàm số trên tập xác định + Dạng 3. Áp dụng tính liên tục xét số nghiệm của phương trình Phần II – Hướng dẫn giải
Tìm giới hạn bằng máy tính cầm tay - Phạm Minh Đức
Tài liệu gồm 20 trang trình bày phương pháp tìm giới hạn bằng máy tính cầm tay Casio – Vinacal, nội dung tài liệu gồm các phần: I.Các phím cần dùng II. Tìm giới hạn III. Ví dụ minh họa IV Bài tập áp dụng [ads]
Tìm giới hạn bằng máy tính cầm tay - Nguyễn Văn Phép
Tài liệu gồm 15 hướng dẫn tìm nhanh giới hạn của dãy số và hàm số bằng máy tính cầm tay Casio, tài liệu được biên soạn bởi thầy Nguyễn Văn Phép. Kiến thức giới hạn dãy số và giới hạn hàm số là cơ sở của của hai phép tính đạo hàm và tích phân ở phổ thông trung học. Kiến thức vế giới hạn không những khó đối với người học mà còn khó đối với người dạy. Trong tình hình hiện nay để cập nhật phù hợp thi trắc nghiệm và giúp giăm bớt khó khăn nên tác giả biên soạn đề tài này. Giải pháp thực hiện bằng máy tính cầm tay (MTCT) để tính giới hạn dãy số và hàm số: + Dãy có giới hạn là 0 + Giới hạn hữu hạn + Dãy số có giới hạn vô cực + Giới hạn hàm số tại một điểm: + Các dạng vô định về giới hạn của hàm số [ads]