Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Bắc Giang

Sáng Chủ Nhật ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề kết hợp trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm 20 câu, phần tự luận gồm 5 câu, thời gian học sinh làm bài 120 phút (không tính thời gian phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang : + Đầu năm học, Hội khuyến học của một tỉnh tặng cho trường A tổng số 245 quyển sách gồm sách Toán và sách Ngữ văn. Nhà trường đã dùng 1/2 số sách Toán và 2/3 số sách Ngữ văn đó để phát cho các bạn học sinh có hoàn cảnh khó khăn. Biết rằng mỗi bạn nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi Hội khuyến học tỉnh đã tặng cho trường A mỗi loại sách bao nhiêu quyền? [ads] + Cho tam giác ABC nội tiếp đường tròn (O) đường kính AC (BA < BC). Trên đoạn thẳng AC lấy điểm I bất kỳ (I khác C). Đường thẳng BI cắt đường tròn (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh rằng tứ giác DHKC là tứ giác nội tiếp. b) Cho độ dài đoạn thẳng AC là 4cm và ABD = 60°. Tính diện tích tam giác ACD. c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC (I khác C) thì điểm E luôn thuộc một đường tròn cố định. + Cho x, y là các số thực thỏa mãn điều kiện x^2 + y^2 = 1. Tìm giá trị nhỏ nhất của biểu thức P = (3 – x)(3 – y).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) là đề thi đặc biệt dành cho tất cả các thí sinh muốn thi vào các lớp chuyên Toán, Văn và Tiếng Anh. Kỳ thi dự kiến diễn ra vào ngày ... tháng 07 năm 2020. Một trong những câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) đề cập đến một lớp chuyên Anh của trường Trung học Thực hành. Trong đó, có bốn tổ học sinh với số học sinh trong mỗi tổ bằng nhau. Sau một bài kiểm tra Anh văn, một số bạn được điểm 8 và các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Vấn đề đặt ra là cần tìm số học sinh trong lớp và số bạn được điểm 9 trong bài kiểm tra Anh văn. Ngoài ra, đề tuyển sinh còn đưa ra một bài toán liên quan đến việc cắt và gấp tấm tôn hình vuông để tạo thành một cái hộp không nắp. Đề bài yêu cầu tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. Đề thi cũng liên quan đến các khái niệm trong hình học như tam giác, đường tròn. Vấn đề được đặt ra là cần chứng minh rằng ba điểm B, M, E thẳng hàng trong một tam giác vuông cân. Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM mang đến cho các thí sinh những bài toán thú vị, phù hợp với trình độ học sinh và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán chính xác.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định đã được công bố, nhằm chọn lọc những học sinh có khả năng xuất sắc trong lĩnh vực Toán học. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định: Tìm các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. Chứng minh rằng đối với tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O), ta có MA > MB + MC khi M là một điểm bất kì trên cung nhỏ BC. Đưa ra các chứng minh liên quan đến tứ giác AMDN, giao điểm của AB và ED, trung điểm của KL và tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng HI vuông góc với EF. Đề thi không chỉ đánh giá kiến thức Toán học của thí sinh mà còn đòi hỏi khả năng tư duy logic, suy luận và giải quyết vấn đề. Hy vọng rằng các thí sinh sẽ hoàn thành kỳ thi một cách xuất sắc và thành công.
Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh lớp 10 môn Toán năm 2020 - 2021 của trường THPT chuyên Bắc Giang là một bài thi khá thú vị và đầy thách thức. Đề thi gồm có 5 bài toán được biên soạn theo dạng đề tự luận, trong đó học sinh sẽ có thời gian làm bài trong 150 phút. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trong đó, một trong những bài toán khá đặc biệt trong đề thi là bài toán liên quan đến parabol và đường thẳng. Học sinh sẽ phải tìm giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. Ngoài ra, còn có các bài toán khác về tam giác, đường tròn và hỗn hợp hình học khác. Đề thi này không chỉ đòi hỏi kiến thức vững chắc mà còn yêu cầu học sinh có khả năng suy luận logic, tư duy sáng tạo và khả năng giải quyết vấn đề. Với độ khó và đa dạng của các bài toán, đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang hứa hẹn sẽ là một bài thi đầy cạm bẫy đối với các thí sinh.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình là bài thi dành cho các thí sinh muốn vào các lớp chuyên Toán và chuyên Tin học. Kỳ thi sẽ được tổ chức vào ngày ... tháng 07 năm 2020. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình bao gồm các câu hỏi sau: Cho biểu thức \( P = (x - 2)^2x + 2\sqrt{x} - 1 \). Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. Cho \( P(x) \) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn \( P(0) = 21; P(1) = 7 \). Chứng minh rằng \( P(x) \) không có nghiệm nguyên. Giả sử phương trình \( 2x^2 + 2ax + 1 - b = 0 \) có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng \( a^2 - b^2 + 2 \) là số nguyên và không chia hết cho 3. Đây là những câu hỏi được chọn lọc kỹ càng để đánh giá năng lực và kiến thức Toán của các thí sinh. Hy vọng rằng đề thi sẽ giúp các thí sinh thể hiện khả năng và đạt kết quả tốt trong kỳ thi tuyển sinh vào trường THPT chuyên Thái Bình.