Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021 sở GDĐT TP HCM

Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM gồm có 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021 sở GD&ĐT TP HCM : + Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó. Để xác định CAN, ta tìm số dư r trong phép chia X cho 10 và tra vào bảng 1. Để xác định CHI, ta tìm số dư s trong phép chia X cho 12 và tra vào bảng 2. Ví dụ : năm 2020 có CAN là Canh, có CHI là Tí. a) Em hãy sử dụng quy tắc trên để xác định CAN, CHI của năm 2005. b) Bạn Hằng nhớ rằng Nguyễn Huệ lên ngôi hoàng đế, hiệu là Quang Trung vào năm Mậu Thân nhưng không nhớ rõ đó là năm bao nhiêu mà chỉ nhớ là sự kiện trên xảy ra vào cuối thể kỉ 18. Em hãy giúp Hằng xác định chính xác năm đó là năm bao nhiêu. + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc và lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y = ax + b. Hãy tìm a, b biết rằng nhà bạn Nam trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 đã gọi 40 phút với số tiền là 28 nghìn đồng. [ads] + Theo quy định của cửa hàng xe máy, để hoàn thành chi tiêu trong một tháng, mỗi nhân viên phải bán được trung binh một chiếc xe máy trong một ngày. Nhân viên nào hoàn thành chi tiêu trong một tháng thì nhận được lưong cơ bản là 8000000 đồng. Nếu trong tháng nhân viên nào bán vượt chỉ tiêu thì được thương thêm $8%$ tiền lời của số xe máy bán vượt chỉ tiêu đó. Trong tháng 5 (có 31 ngày), anh Thành nhận được số tiền là 9800000 đồng (bao gồm cả lương cơ bản và tiền thưởng thêm cúa tháng 6 ). Hỏi anh Thành đã bán được bao nhiêu chiếc xe máy trong tháng 5, biết rằng mỗi xe máy bán ra thì cửa hàng thu lời được 2 500 000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Khánh Hòa
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Khánh Hòa Đề thi tuyển sinh THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Khánh Hòa Ngày 16 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 - 2021. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Một trong các câu hỏi trong đề thi là: "Hai trường A và B trên địa bàn tỉnh Khánh Hòa đã quyên góp được 1137 phần quà gồm mì tôm (đơn vị thùng) và gạo (đơn vị bao). Mỗi lớp của trường A ủng hộ được 8 thùng mì và 5 bao gạo; mỗi lớp của trường B ủng hộ được 7 thùng mì và 8 bao gạo. Biết số bao gạo ít hơn số thùng mì là 75 phần quà. Hỏi mỗi trường có bao nhiêu lớp?". Câu hỏi tiếp theo đề cập đến hình học: "Cho đường tròn (O) và một điểm I nằm ngoài đường tròn. Qua I kẻ hai tiếp tuyến IM và IN với đường tròn (O). Gọi K là điểm đối xứng với M qua O. Đường thẳng IK cắt đường tròn (O) tại H. a. Chứng minh tứ giác IMON nội tiếp đường tròn. b. Chứng minh IM.IN = IH.IK. c. Kẻ NP vuông góc với MK. Chứng minh đường thẳng IK đi qua trung điểm của NP." Đề còn đưa ra một bài toán giải phương trình đơn giản: "Giải phương trình x^2 - 5x + 4 = 0".
Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên)
Nội dung Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc (chuyên) Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc (chuyên) là bước quan trọng để thí sinh thi vào các lớp chuyên Toán và chuyên Tin. Đề bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc: Bài toán 1: Tìm tất cả các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = d!. Bài toán 2: Cho tam giác nhọn ABC có AB < AC và nội tiếp đường tròn (O). Chứng minh rằng tam giác ABD cân và xác định tâm đường tròn ngoại tiếp tam giác ABC. Bài toán 3: Chứng minh rằng ID.IE = IF.DE trong tam giác ABC. Bài toán 4: Giải hệ thức với điểm M, N, H, K trong tam giác ABC theo yêu cầu đề bài. Bài toán 5: Thầy Du có thể nhận được kết quả là số 2021 hoặc 2022 khi viết số 2020^2021 thành tổng của các số nguyên dương và cộng các chữ số của từng số nguyên dương này với nhau. Vậy tại sao thầy Du có thể nhận được kết quả như vậy? Đề tuyển sinh chuyên môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc là cơ hội để thí sinh thể hiện kiến thức và kỹ năng Toán của mình, đồng thời chuẩn bị cho hành trình học tập tương lai trong lĩnh vực Toán học.
Đề tuyển sinh 10 môn Toán năm 2020 2021 trường THPT chuyên Hà Tĩnh (chuyên)
Nội dung Đề tuyển sinh 10 môn Toán năm 2020 2021 trường THPT chuyên Hà Tĩnh (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) là bài thi dành cho những thí sinh mong muốn vào học tại các lớp chuyên Toán. Kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh môn Toán năm 2020 - 2021: Tồn tại hay không số nguyên dương n sao cho 2n + 2021 và 3n + 2020 đều là các số chính phương. Tìm tất cả các cặp số nguyên dương (x;y) sao cho (x^2 - 2)/(xy + 2) có giá trị là số nguyên. Cho hai đường tròn (O) và (O') cắt nhau tại A và B sao cho hai tâm O và O' nằm khác phía đối với đường thẳng AB. Đường thẳng d thay đổi đi qua B cắt các đường tròn (O) và (O') lần lượt tại C và D (d không trùng với đường thẳng AB). Với các câu hỏi rất thú vị và đa dạng về nội dung, đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) đòi hỏi thí sinh phải có kiến thức sâu rộng và khả năng suy luận tốt. Chúc các thí sinh may mắn và thành công trong kỳ thi sắp tới!
Đề tuyển sinh 10 chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nam (chuyên)
Nội dung Đề tuyển sinh 10 chuyên môn Toán năm 2020 2021 sở GD ĐT Hà Nam (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) Đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên) là đề thi dành cho thí sinh muốn thi vào các lớp chuyên Toán tại các trường THPT chuyên thuộc sở Giáo dục và Đào tạo tỉnh Hà Nam. Trích dẫn đề tuyển sinh 10 chuyên môn Toán năm 2020 - 2021 sở GD&ĐT Hà Nam (chuyên): Giải hệ phương trình. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AH. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Đường thẳng AI cắt đường tròn (O) tại điểm thứ hai M. Gọi A' là điểm đối xứng với A qua O. Đường thẳng MA' cắt các đường thẳng AH, BC theo thứ tự tại N và K. Gọi L là giao điểm của MA và BC. Đường thẳng A'I cắt đường tròn (O) tại điểm thứ hai D. Hai đường thẳng AD và BC cắt nhau tại điểm S. Chứng minh tam giác ANA' là tam giác cân và MA'.MK = ML.MA. Chứng minh MI^2 = ML.MA và tứ giác NHIK là tứ giác nội tiếp. Gọi I là trung điểm của cạnh SA, chứng minh ba điểm T, I, K thẳng hàng. Chứng minh nếu AB + AC = 2BC thì I là trọng tâm của tam giác AKS. Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn 2^x - y^2 + 4y + 61 = 0. Đề tuyển sinh này đòi hỏi thí sinh có kiến thức vững về Toán cùng khả năng giải quyết các vấn đề phức tạp. Hy vọng những thí sinh tham gia sẽ có thể tự tin và thành công trong kỳ thi tuyển sinh.