Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 3 năm 2019 - 2020 trường Nguyễn Thị Giang - Vĩnh Phúc

Ngày … tháng 06 năm 2020, trường THPT Nguyễn Thị Giang, huyện Vĩnh Tường, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2019 – 2020 lần thi thứ ba. Đề KSCL Toán 12 lần 3 năm học 2019 – 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, cấu trúc đề thi bám sát đề minh họa tốt nghiệp THPT 2020 môn Toán, đề thi có đáp án. Trích dẫn đề KSCL Toán 12 lần 3 năm 2019 – 2020 trường Nguyễn Thị Giang – Vĩnh Phúc : + Các nhà khoa học đã tính được rằng khi nhiệt độ trung bình của trái đất tăng thêm 2 độ C thì mực nước biển sẽ dâng lên 0,03m. Nếu nhiệt độ tăng lên 5 độ C thì nước biển sẽ dâng lên 0,1m và người ta đưa ra công thức tổng quát như thế này: Nếu nhiệt độ trung bình của trái đất tăng lên tC thì nước biển dâng lên f(t) = k.a^t (m) với k, a là các hằng số dương. Hỏi khi nhiệt độ trung bình của trái đất tăng thêm bao nhiêu độ C thì mực nước biển dâng lên 0,2m? [ads] + Có 3 bạn nam và 2 bạn nữ của lớp 12A cùng với thầy chủ nhiệm của mình xếp thành hàng ngang để chụp ảnh làm kỷ niệm. Tính xác suất sao cho thầy chủ nhiệm đứng giữa hai bạn nữ. + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy là hình vuông cạnh a, chiều cao A’A = b. Gọi M là trung điểm cạnh CC’. Tính thể tích khối tứ diện BDA’M.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra khảo sát Toán 12 năm 2023 - 2024 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát học sinh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND thành phố Hà Nội; kỳ thi được diễn ra vào chiều thứ Sáu ngày 05 tháng 04 năm 2024. Trích dẫn Đề kiểm tra khảo sát Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội : + Sau khi uống rượu và điều khiển xe ô tô trên đường, ông A bị xử phạt số tiền 40 000 000 đồng và phải hoàn thành trong thời hạn 10 ngày kể từ ngày vi phạm. Theo Thông tư số 18/2023/TT-BTC của Bộ tài chính ngày 21 tháng 03 năm 2023, cứ mỗi ngày chậm nộp phạt, cá nhân phải nộp thêm 0,05% trên tổng số tiền phạt chưa nộp. Để số tiền phải nộp thêm do chậm nộp phạt không quá 200 000 đồng thì ngày muộn nhất ông A phải đến nộp tiền là ngày thứ bao nhiêu kể từ ngày vi phạm? + Một chiếc hộp có chứa 19 tấm thẻ được đánh số từ 1 đến 19. Lấy ngẫu nhiên cùng lúc hai tấm thẻ trong hộp. Xác suất để lấy được hai tấm thẻ cùng mang số lẻ bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O (tham khảo hình vẽ). Gọi M là trung điểm của OD. Khoảng cách từ điểm B tới mặt phẳng (SCD) bằng 4. Khi đó khoảng cách từ điểm M tới mặt phẳng (SCD) bằng?
Đề khảo sát lần 3 Toán 12 năm 2023 - 2024 trường THPT Đội Cấn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 035. Trích dẫn Đề khảo sát lần 3 Toán 12 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4 3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 3 cm 3 π. Tính thể tích nước ban đầu ở trong bể. + E. coli là vi khuẩn đường ruột gây tiêu chảy, đau bụng dữ dội. Cứ sau 20 phút thì số lượng vi khuẩn E. coli tăng gấp đôi. Ban đầu, chỉ có 40 vi khuẩn E. coli trong đường ruột. Hỏi sau bao lâu, số lượng vi khuẩn E. coli là 671088640 con? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5;-1), B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho MA MB nhỏ nhất?
Đề khảo sát chất lượng Toán 12 THPT năm 2023 - 2024 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 12 THPT năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho khối trụ có hai đáy lần lượt là hình tròn tâm O, O’ và chiều cao bằng 2a. Một mặt phẳng đi qua tâm O, tạo với OO’ một góc 30° đồng thời cắt hai đường tròn tâm O, O’ tại bốn điểm tạo thành bốn đỉnh của một hình thang có đáy lớn gấp đôi đáy nhỏ và diện tích bằng 2a2. Thể tích của khối trụ đã cho bằng? + Cho hàm số f(x) liên tục trên R và thỏa mãn. Đồ thị hàm số g (x) = ax3 + bx2 + cx – 9 cắt đồ thị hàm số f(x) tại 3 điểm có hoành độ là 1; 2; 3. Hình phẳng giới hạn bởi đồ thị hai hàm số f(x) và g(x) có diện tích bằng? + Cho tập hợp A = {1; 2; 3; …; 11}. Chọn ngẫu nhiên 4 số từ A. Xác suất để tổng 4 số được chọn là một số lẻ bằng?
Đề khảo sát lần 1 Toán 12 năm 2023 - 2024 trường THPT Đinh Tiên Hoàng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Đinh Tiên Hoàng, thành phố Hà Nội; đề thi có đáp án mã đề 121 – 122 – 123 – 124 – 125 – 126 – 127 – 128. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2023 – 2024 trường THPT Đinh Tiên Hoàng – Hà Nội : + Anh Nam là sinh viên mới ra trường, nhận được việc làm với mức lương 6 triệu đồng/tháng. Anh ấy dự định hằng tháng sẽ trích ra ít nhất a% lương của mình để gửi tiết kiệm, với mong muốn là sau đúng 2 năm kể từ lần gửi đầu tiên và sau lần gửi cuối cùng đúng 1 tháng tổng số tiền cả gốc và lãi thu được đủ để mua một chiếc xe máy trị giá 25 triệu đồng. Biết rằng lãi suất là 0, 55% / tháng, hai lần gửi liên tiếp cách nhau 1 tháng và theo hình thức lãi kép, đồng thời lãi suất và lương không thay đổi trong suốt thời gian gửi. Hỏi a gần nhất với số nào sau đây? + Cho G là thập giác đều và M là tập hợp 11 điểm gồm 10 đỉnh của thập giác và tâm của G (tham khảo hình vẽ). Chọn ngẫu nhiên 3 điểm thuộc M, xác suất để 3 điểm được chọn lập thành một tam giác bằng? + Trong không gian Oxyz, cho hai điểm A(0; 1; 2), B(2; 1; −8). Từ điểm M(−3; 9; 5) kẻ được bao nhiêu đường thẳng cắt mặt cầu đường kính AB tại hai điểm C, D thỏa mãn MC + MD = 24.