Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 9 năm 2019 - 2020 trường THCS Nguyễn Huệ - TP HCM

Nhằm giúp các em học sinh lớp 9 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 9, THCS. giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 9 năm học 2019 – 2020 trường THCS Nguyễn Huệ, quận Tân Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 9 năm 2019 – 2020 trường THCS Nguyễn Huệ – TP HCM : + Một trường tổ chức cho 425 người bao gồm giáo viên và học sinh đi tham quan Suối Tiên. Biết giá vé vào cổng của một giáo viên là 100 000 đồng, giá vé vào cổng của một học sinh là 90 000 đồng. Biết rằng nhà trường tổ chức đi vào đúng dịp lễ Giỗ tổ Hùng Vương nên được giảm giá 5% cho mỗi vé vào cổng, vì vậy nhà trường chỉ phải trả tổng số tiền là 36 575 000 đồng. Hỏi có bao nhiêu giáo viên, bao nhiêu học sinh đi tham quan? + Một hòn đá rơi xuống một cái hang, khoảng cách rơi xuống được cho bởi công thức h = 4,9.t2 (mét), trong đó t là thời gian tính bằng giây. Hãy tính độ sâu của hang nếu mất 3 giây để hòn đá chạm đáy của cái hang đó. + Cổng của một công viên văn hóa có khoảng trống phía trong cổng có dạng parabol y = -1/2×2 và chiều cao 4,5 m như hình bên dưới. Người ta cần đưa hàng qua cổng này bằng một xe tải có chiều cao là 3m và bề rộng của thùng xe là 3m. Hỏi có thể qua cổng được không?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).
Đề thi học kì 2 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 76 m, diện tích bằng 240 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó. + Trong cùng một mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m + 1)x – 2m – 3 và Parabol (P): y = −x2 (với m là tham số). a) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) khi m = 1. b) Tìm m để Parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt, sao cho hoành độ của hai điểm cùng nhỏ hơn 2. + Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MCD không đi qua tâm O (điểm C nằm giữa điểm M và điểm D; cát tuyến MDC và điểm A cùng thuộc nửa mặt phẳng bờ MO). Gọi H là giao điểm của MO và AB. a) Chứng minh: OM vuông góc với AB và MA2 = MC.MD; b) Chứng minh: Tứ giác CDOH nội tiếp đường tròn; c) Vẽ dây cung CE của đường tròn (O) đi qua H. Chứng minh DE song song với AB.