Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 2022 sở GD ĐT Thanh Hóa

Nội dung Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 2022 sở GD ĐT Thanh Hóa Bản PDF Thứ Bảy ngày 25 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán khối THPT năm học 2021 – 2022. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 106 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 07 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Cho hình chóp S ABC có đáy ABC là tam giác đều SA ABC. Gọi P là mặt phẳng qua B và vuông góc với đường thẳng SC. Thiết diện do mp P cắt hình chóp S ABC là: A. Tam giác đều. B. Tam giác cân. C. Tam giác vuông D. Hình thang vuông. + Để chuẩn bị cổ vũ cho đội tuyển Việt Nam tham dự giải AFF Suzuki Cup 2020, một hội cổ động viên dự định sơn và trang trí cho 1000 chiếc nón lá như sau: Độ dài đường sinh của chiếc nón lá là 40cm, theo độ dài đường sinh kể từ đỉnh nón cứ 8cm thì sơn màu đỏ, màu vàng xen kẽ nhau, sau đó dán 20 ngôi sao màu vàng cho mỗi chiếc nón (như hình minh họa bên). Biết rằng đường kính của đường tròn đáy nón là 40cm , mỗi ngôi sao màu vàng và công dán giá 400 đồng, tiền sơn và công sơn màu vàng giá 30.000 đồng/m2 và tiền sơn và công sơn màu đỏ giá 40.000 đồng/m2. Hỏi giá thành để sơn và trang trí cho 1000 chiếc nón lá như trên là bao nhiêu? + Một tỉnh A đưa ra nghị quyết về giảm biên chế cán bộ công chức, viên chức hưởng lương từ ngân sách nhà nước trong giai đoạn 2015 2021 (6 năm) là 9,9% so với số lượng hiện có năm 2015 theo phương thức “ra 2 vào 1”(tức là khi giảm đối tượng hưởng lương từ ngân sách nhà nước 2 người thì được tuyển mới 1 người). Giả sử tỷ lệ giảm và tuyển dụng mỗi năm so với năm trước đó là như nhau. Tính tỷ lệ tuyển dụng mới hàng năm (làm tròn đến 0,01%). + Cho khối trụ T có hai đáy là hai hình tròn O và O. Xét hình chữ nhật ABCD có hai điểm A B cùng thuộc đường tròn O và hai điểm C D cùng thuộc đường tròn O sao cho AB a BC a 3 2 đồng thời mặt phẳng ABCD tạo với mặt đáy của hình trụ một góc 60. Thể tích khối trụ T bằng? + Cho hai hàm số bậc ba y f x và y g x f mx n (trong đó m n) có đồ thị như hình vẽ bên. Biết rằng điểm cực tiểu của hàm số y g x lớn hơn điểm cực đại của hàm số y g x là 5 đơn vị và g 0 1. Khi đó giá trị biểu thức P m n 3 2 là?

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABC), đường SB tạo với mặt phẳng (ABC) một góc 0 60, M là trung điểm cạnh BC. Tính theo a thể tích khối S.ABC và khoảng cách giữa hai đường thẳng SM và AC. + Có 2017 học sinh đứng thành vòng tròn và quay mặt vào giữa để chơi trò đếm số như dưới đây: Mỗi học sinh đếm một số lần lượt theo chiều kim đồng hồ, bắt đầu từ học sinh A nào đó. Các số được đếm là 1, 2, 3 và cứ lặp lại theo thứ tự như thế. Nếu học sinh nào đếm số 2 hoặc số 3 thì phải dời khỏi ngay vị trí ở vòng tròn. Học sinh còn lại cuối cùng sẽ được thưởng. Hỏi học sinh muốn nhận phần thưởng thì lúc bắt đầu chơi phải chọn vị trí thứ bao nhiêu theo chiều kim đồng hồ kể từ học sinh A đếm số 1 đầu tiên. + Cho hàm số 3 2 y x x mx 3 4 (m là tham số). Tìm m để hàm số đồng biến trên khoảng (−∞;0).
Đề thi chọn học sinh giỏi Toán 12 năm học 2016 - 2017 sở GD và ĐT Vĩnh Phúc
Đề thi chọn học sinh giỏi (HSG) Toán 12 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 6 câu tự luận. Trích một số câu trong đề thi: 1. Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng AB = 4 km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng BC = 7 km. Người canh hải đăng phải chèo đò từ vị trí A đến vị trí M trên bờ biển với vận tốc 6 km/h rồi đi xe đạp từ M đến C với vận tốc 10 km/h (hình vẽ bên). Xác định vị trí của M để người đó đến C nhanh nhất. 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 8, BC = 6. Biết SA = 6 và SA vuông góc với mặt phẳng (ABC). Tìm bán kính mặt cầu có tâm thuộc phần không gian bên trong của hình chóp và tiếp xúc với tất cả các mặt của hình chóp S.ABC.
Đề thi chọn học sinh giỏi Toán 12 năm 2016 sở GD và ĐT Quảng Ninh
Đề thi chọn học sinh giỏi Toán 12 năm 2016 sở GD và ĐT Quảng Ninh gồm 6 câu tự luận, có đáp án và thang điểm. Trích một số câu trong đề thi: 1. Một học sinh tham dự kỳ thi môn Toán. Học sinh đó phải làm một đề thi trắc nghiệm khách quan gồm 10 câu. Mỗi câu có 4 đáp án khác nhau, trong đó chỉ có một đáp án đúng. Học sinh sẽ được chấm đỗ nếu trả lời đúng ít nhất 6 câu. Vì học sinh đó không học bài nên chỉ chọn ngẫu nhiên đáp án trong cả 10 câu hỏi. Tính xác suất để học sinh thi đỗ. 2. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn. Đường thẳng chứa trung tuyến kẻ từ B và đường thẳng AC lần lượt có phương trình : 3x + 5y – 8 = 0; x – y – 4 = 0. Đường thẳng qua B và vuông góc với AC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; –2). Tính diện tích tam giác ABC. 3. Cho hình chóp đều S.ABCD, có đáy là hình vuông ABCD với độ dài cạnh bằng a và tâm là O. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) bằng 60. Tính cosin của góc giữa MN và mặt phẳng (SBD).
Đề thi chọn học sinh giỏi Toán 12 năm học 2016 - 2017 sở GD và ĐT Ninh Bình
Đề thi chọn học sinh giỏi Toán 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu