Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo
Nội dung Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Bí quyết chứng minh bất đẳng thức Nguyễn Quốc Bảo Được biên soạn bởi tác giả Nguyễn Quốc Bảo, tài liệu này gồm 327 trang, giúp hướng dẫn các phương pháp chứng minh bất đẳng thức. Bất đẳng thức là dạng toán khó thường xuất hiện trong các đề thi chọn học sinh giỏi Toán lớp 8/ Toán lớp 9, đề tuyển sinh lớp 10 môn Toán. Phần I của tài liệu bao gồm các phương pháp chứng minh bất đẳng thức như sau: Chủ đề 1: Phương pháp dùng định nghĩa trong chứng minh bất đẳng thức. Chủ đề 2: Phương pháp biến đổi tương đương trong chứng minh bất đẳng thức. Chủ đề 3: Phương pháp phản chứng trong chứng minh bất đẳng thức. Chủ đề 4: Phương pháp tam thức bậc hai trong chứng minh bất đẳng thức. Và các chủ đề khác như sử dụng tính chất tỷ số, làm trội, làm giảm, quy nạp toán học, dãy số, AM-GM (Cauchy), Bunyakovsky, có biến trên một đoạn, kĩ thuật đồng bậc hóa, chuẩn hóa, sử dụng đẳng thức, nguyên lý Dirichlet, sắp xếp biến, hàm số bậc nhất, dồn biến, hình học, đổi biến, cực trị, hệ số bất định. Phần II của tài liệu tập trung vào tuyển chọn các bài toán bất đẳng thức hay thường xuất hiện trong các kì thi chọn học sinh giỏi Toán. Bí quyết chứng minh bất đẳng thức của Nguyễn Quốc Bảo là nguồn tư liệu hữu ích giúp học sinh nắm vững và áp dụng thành thục các phương pháp chứng minh bất đẳng thức trong quá trình học tập của mình.
Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo
Nội dung Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc BảoChủ đề I. Chứng minh đẳng thứcChủ đề II. Tính giá trị biểu thức một biếnChủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo Tài liệu này được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, với mục đích hướng dẫn học sinh cách giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức. Tài liệu gồm 94 trang, phù hợp cho học sinh lớp 8, lớp 9 và cả những ai muốn ôn thi vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm các chủ đề sau: Chủ đề I. Chứng minh đẳng thức Dạng 1: Sử dụng phép biến đổi thương đương Dạng 2: Sử dụng hằng đẳng thức quen biết Dạng 3: Sử dụng phương pháp đổi biến Dạng 4: Sử dụng bất đẳng thức Dạng 5: Sử dụng lượng liên hợp ... (và các dạng khác) Chủ đề II. Tính giá trị biểu thức một biến Dạng 1: Tính giá trị biểu thức chứa đa thức Dạng 2: Tính giá trị biểu thức chứa căn thức Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình ... (và các dạng khác) Chủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Dạng 1: Sử dụng phương pháp phân tích Dạng 2: Sử dụng phương pháp hệ số bất định Dạng 3: Sử dụng phương pháp hình học ... (và các dạng khác) Mỗi chủ đề trong tài liệu đều được chia thành ba phần: Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản và bổ sung để giải các bài tập thuộc các dạng toán Một số ví dụ: Cung cấp ví dụ minh họa để học sinh hiểu rõ về kỹ năng và phương pháp giải Bài tập vận dụng: Hệ thống bài tập phân loại theo độ khó, bao gồm cả các bài tập từ đề thi học sinh giỏi và đề thi vào lớp 10 chuyên Toán Tài liệu này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán, và chuẩn bị tốt cho kỳ thi sắp tới. Cùng với sự hướng dẫn cụ thể và ví dụ minh họa, việc ôn tập sẽ trở nên dễ dàng và hiệu quả hơn.
Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung
Nội dung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Bản PDF - Nội dung bài viết Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức Nguyễn Tài Chung Tài liệu mang tựa đề "Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức" được biên soạn bởi thầy giáo Nguyễn Tài Chung. Tài liệu này hướng dẫn cách sử dụng nguyên lí Dirichle để chứng minh bất đẳng thức, đồng thời phù hợp cho việc bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nội dung bắt đầu bằng việc đưa ra một ví dụ hay về Nguyên lý Dirichle: Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Nguyên lý Dirichle đơn giản nhưng lại có tính hiển nhiên và logic. Tiếp theo, tài liệu mô tả cách áp dụng nguyên lí Dirichle vào việc chứng minh bất đẳng thức thông qua các ví dụ cụ thể. Ví dụ về việc chọn "điểm rơi" để giả sử để chứng minh bất đẳng thức, và cách xử lý khi đã chọn được điểm đó. B. BÀI TẬP Phần này tập trung vào việc thực hành các bài tập liên quan đến sử dụng nguyên lí Dirichle chứng minh bất đẳng thức. Học sinh sẽ được yêu cầu tự giải các bài tập, từ đó củng cố kiến thức và kỹ năng của mình trong việc áp dụng nguyên lí này. Đây là một tài liệu hữu ích và có thể giúp học sinh hiểu rõ hơn về nguyên lí Dirichle và cách áp dụng nó vào việc chứng minh bất đẳng thức. Việc thực hành các bài tập cũng giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic trong Toán.
5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng
Nội dung 5 chủ đề ôn thi tuyển sinh vào môn Toán Lê Văn Hưng Bản PDF - Nội dung bài viết Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu ôn thi Toán lớp 10 của thầy Lê Văn Hưng Tài liệu được soạn bởi thầy giáo Lê Văn Hưng, tập hợp 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, bao gồm 182 trang đầy đủ kiến thức cần thiết từ lý thuyết đến các dạng bài tập thực hành. Trước mỗi chủ đề, tài liệu tổng hợp và tóm tắt những khái niệm quan trọng mà học sinh cần hiểu rõ, cung cấp hướng dẫn cụ thể cho việc giải các dạng bài tập phổ biến. Bên cạnh đó, tài liệu cũng chọn lọc và biên soạn các bài tập tự luyện từ các đề thi tuyển sinh vào lớp 10 của sở GD&ĐT Hà Nội. Đây thực sự là nguồn tài liệu hữu ích và chuẩn bị tốt cho học sinh chuẩn bị bước vào kỳ thi tuyển sinh quan trọng. Nhờ tài liệu của thầy Lê Văn Hưng, học sinh có thể tự tin hơn trong việc ôn luyện và đạt kết quả cao trong kỳ thi sắp tới.