Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 (HK1) lớp 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Nguyễn Tất Thành Kon Tum

Nội dung Đề học kì 1 (HK1) lớp 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Nguyễn Tất Thành Kon Tum Bản PDF Thứ Bảy ngày 18 tháng 12 năm 2021, trường THPT chuyên Nguyễn Tất Thành, tỉnh Kon Tum tổ chức kì thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2021 – 2022. Đề HK1 Toán lớp 10 (chuyên) năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum dành cho học sinh các lớp 10 theo học chương trình chuyên Toán, đề được biên soạn theo hình thức đề thi 100% tự luận với 05 bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có hướng dẫn giải và thang chấm điểm. Trích dẫn đề cuối HK1 Toán lớp 10 năm 2021 – 2022 trường chuyên Nguyễn Tất Thành – Kon Tum : + Một hộp có 15 bi đỏ được đánh số từ 1 đến 15 ; 20 bi vàng được đánh số từ 1 đến 20 và 25 bi xanh được đánh số từ 1đến 25 . Lấy ngẫu nhiên từ hộp ra ba viên bi. a. Hỏi có tất cả bao nhiêu cách lấy được ba viên bi cùng màu. b. Hỏi có tất cả bao nhiêu cách lấy được ba bi khác màu và khác số (từng đôi một). c. Hỏi có tất cả bao nhiêu cách lấy để tổng các số ghi trên ba viên bi được lấy ra là một số chia hết cho 3. + Trong hệ trục tọa độ Oxy cho A B C a. Chứng minh rằng A B C là ba đỉnh của một tam giác cân. b. Tìm tọa độ trực tâm H của tam giác ABC. c. Tìm điểm M trên trục hoành sao cho MA MB MC đạt giá trị nhỏ nhất. + Cho tam giác ABC có trọng tâm G. Gọi D và E lần lượt là các điểm thỏa mãn đẳng thức AD AB AE x AC 2. a. Phân tích vectơ AG theo hai vectơ AB và AC. b.Tìm x để ba điểm D G E thẳng hàng. Với giá trị tìm được của x hãy tính tỉ số DG DE.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Du TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Hoàng Hoa Thám TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hoàng Hoa Thám, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Hoàng Hoa Thám – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;-1), B(3;2), C(0;3). a) Tìm tọa độ điểm N sao cho ABCN là hình bình hành. b) Tìm tọa độ điểm H là giao điểm của đường thẳng AB và trục tung. + Lập bảng biến thiên và vẽ đồ thị (P) của hàm số y = x2 + 4x. + Cho 3tanx + 5 = 0 với x là góc tù. Tính giá trị biểu thức P = 4cosx/(sinx)^2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Lý Thái Tổ TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Lý Thái Tổ, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Lý Thái Tổ – TP HCM : + Tìm m để phương trình có hai nghiệm thỏa điều kiện. + Tìm tập xác định của các hàm số. + Xét sự biến thiên và vẽ đồ thị của hàm số: y = 2×2 – 4x + 2.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).