Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội

Nội dung Đề thi thử vào môn Toán năm 2022 2023 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2022-2023 trường THCS Giảng Võ Hà Nội Đề thi thử vào môn Toán năm 2022-2023 trường THCS Giảng Võ Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi thử tuyển sinh vào lớp 10 môn Toán năm học 2022-2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội. Đề thi sẽ diễn ra vào ngày 18 tháng 05 năm 2022. Dưới đây là một số câu hỏi trong đề thi thử: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Để hưởng ứng phong trào “Góp một cuốn sách nhỏ đọc ngàn cuốn sách hay” trong học kì I khối 8 và khối 9 quyên góp được 780 cuốn sách. Sang học kì ll số sách khối 8 quyên góp được giảm 15% số sách khối 9 quyên góp được tăng 20% so với học kì I nên cả hai khối quyên góp được 789 cuốn sách. Hỏi trong học kì I mỗi khối đã quyên góp được bao nhiêu cuốn sách? 2. Một bể cá mini có dạng hình cầu bán kính 7,5 cm. Hỏi cần ít nhất bao nhiêu lít nước để thay nước cho bể cá. Biết lượng nước cần thay bằng thể tích của bể (bỏ qua bề dày thành bể lấy pi ≈ 3,14 và làm tròn kết quả đến chữ số thập phân thứ nhất). 3. Cho x > 0 và y > 0 và x + y < 1. Tìm giá trị nhỏ nhất của biểu thức A. Hy vọng rằng đề thi thử này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC vuông tại A, biết độ dài các cạnh AB = 6cm, AC = 8cm. Bán kính đường tròn ngoại tiếp tam giác ABC bằng? + Một hãng taxi công nghệ cao có giá cước (giá tiền khách hàng phải trả cho mỗi km) được tính theo các mức như sau: Mức 1: Giá mở cửa cho 1 km đầu tiên là 20000 đồng. Mức 2: Từ trên 1 km đến 25 km. Mức 3: Từ trên 25 km. Biết rằng anh A đi 32 km phải trả tiền taxi là 479500 đồng còn chị B đi 41 km phải trả 592000 đồng. Hỏi giá cước của hãng taxi trên ở mức 2 và mức 3 là bao nhiêu? Nếu khách hàng đi 24 km thì phải trả taxi bao nhiêu tiền? + Cho đường tròn (O) và BC là một dây cung khác đường kính của (O), A là điểm di động trên cung lớn BC sao cho AC > AB (A khác B). Gọi D là chân đường phân giác trong góc BAC (D thuộc BC). Đường thẳng đi qua O và vuông góc với BC cắt đường thẳng AD tại E. Kẻ EH, EK lần lượt vuông góc với AB và AC (H thuộc AB, K thuộc AC). a) Chứng minh EHAK là tứ giác nội tiếp. b) Gọi F là tâm đường tròn nội tiếp tam giác ABC. Chứng minh điểm E thuộc đường tròn (O) và E là tâm đường tròn ngoại tiếp tam giác BCF. c) Gọi M, N, I lần lượt là trung điểm của các đoạn thẳng AE, BE và BC. Chứng minh BMDN là tứ giác nội tiếp. Xác định vị trí điểm A để bốn điểm H, N, I, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi, theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rẳng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau). + Một khối gỗ dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm. Tính thể tích khối gỗ đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC. 1. Chứng minh tứ giác SAOI nội tiếp. 2. Gọi H, D lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SO, BC. Chứng minh OAH = IAD. 3. Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE. Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQ.BA = BD.BI và đường thẳng CK song song với đường thẳng SO.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).