Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

Tài liệu gồm 240 trang, phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2) có đáp án, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 giai đoạn học kì 2. MỤC LỤC : Phần I GIẢI TÍCH. Bài 1. Nguyên hàm 6. + Dạng 1.1: Nguyên hàm cơ bản 6. Bảng đáp án 10. + Dạng 1.2: Nguyên hàm của hàm số hữu tỷ 10. Bảng đáp án 12. + Dạng 1.3: Nguyên hàm thỏa điều kiện cho trước 12. Bảng đáp án 14. + Dạng 1.4: Nguyên hàm của hàm số đạo hàm f′(x) 14. Bảng đáp án 16. + Dạng 1.5: Nguyên hàm của hàm số phân nhánh 17. Bảng đáp án 17. + Dạng 1.6: Phương pháp đổi biến số 18. Bảng đáp án 21. + Dạng 1.7: Phương pháp từng phần 21. Bảng đáp án 24. + Dạng 1.8: Nguyên hàm kết hợp đổi biến và từng phần 25. Bảng đáp án 25. + Dạng 1.9: Nguyên hàm của hàm ẩn 25. Bảng đáp án 29. Bài 2. TÍCH PHÂN 29. + Dạng 2.1: Tích phân sử dụng định nghĩa – tính chất 29. Bảng đáp án 33. + Dạng 2.2: Tích phân cơ bản 34. Bảng đáp án 39. + Dạng 2.3: Tích phân chứa trị tuyệt đối 39. Bảng đáp án 40. + Dạng 2.4: Tích phân đổi biến số 40. Bảng đáp án 47. + Dạng 2.5: Tích phân từng phần 48. Bảng đáp án 53. + Dạng 2.6: Tích phân kết hợp đổi biến và từng phần 54. Bảng đáp án 55. + Dạng 2.7: Tích phân hàm hữu tỷ 55. Bảng đáp án 56. + Dạng 2.8: Tích phân hàm ẩn 56. Bảng đáp án 61. + Dạng 2.9: Tích phân hàm phân nhánh 61. Bảng đáp án 62. + Dạng 2.10: Tích phân dựa vào đồ thị 62. Bảng đáp án 64. Bài 3. Ứng dụng tích phân 65. A Diện tích hình phẳng 65. + Dạng 3.1: Câu hỏi lý thuyết 65. Bảng đáp án 70. + Dạng 3.2: Diện tích hình phẳng được giới hạn các hàm số 70. Bảng đáp án 90. + Dạng 3.3: Bài toán chuyển động 91. Bảng đáp án 93. + Dạng 3.4: Toán thực tế – ứng dụng diện tích 93. Bảng đáp án 98. B THỂ TÍCH KHỐI TRÒN XOAY 98. + Dạng 3.5: Thể tích khối tròn xoay được giới hạn các hàm số 98. Bảng đáp án 105. + Dạng 3.6: Thể tích theo mặt cắt S(x) 105. Bảng đáp án 107. + Dạng 3.7: Bài toán thực tế ứng dụng thể tích 107. Bảng đáp án 110. Bài 4. SỐ PHỨC 111. A Khái niệm số phức 111. + Dạng 4.1: Câu hỏi lý thuyết 111. Bảng đáp án 111. + Dạng 4.2: Phần thực, phần ảo, môđun, số phức liên hợp 111. Bảng đáp án 114. + Dạng 4.3: Biểu diễn số phức 114. Bảng đáp án 118. B Các phép toán số phức 119. + Dạng 4.4: Câu hỏi lý thuyết 119. Bảng đáp án 119. + Dạng 4.5: Thực hiện các phép toán trên số phức 119. Bảng đáp án 122. + Dạng 4.6: Xác định các yếu tố số phức 122. Bảng đáp án 125. + Dạng 4.7: Tìm số phức thỏa điều kiện 125. Bảng đáp án 128. C Biểu diễn hình học 128. + Dạng 4.8: Biểu diễn hình học số phức qua các phép toán 128. Bảng đáp án 130. + Dạng 4.9: Tập hợp số phức 131. Bảng đáp án 133. D Phương trình bậc hai 133. + Dạng 4.10: Phương trình bậc 2 với hệ số thực – Tính toán biểu thức nghiệm 133. Bảng đáp án 137. + Dạng 4.11: Định lí Vi – et trong số phức 137. Bảng đáp án 139. + Dạng 4.12: Biểu diễn hình học nghiệm của phương trình bậc hai 139. Bảng đáp án 140. + Dạng 4.13: Bài toán chứa tham số m 141. Bảng đáp án 142. E CỰC TRỊ SỐ PHỨC 142. + Dạng 4.14: Sử dụng Môđun – liên hợp 142. Bảng đáp án 143. + Dạng 4.15: Phương pháp hình học 143. Bảng đáp án 145. + Dạng 4.16: Phương pháp đại số 145. Bảng đáp án 147. Phần II HÌNH HỌC. Bài 1. HỆ TRỤC TỌA ĐỘ 149. + Dạng 1.1: Tọa độ điểm, tọa độ véc – tơ 149. Bảng đáp án 153. + Dạng 1.2: Tích vô hướng và ứng dung 153. Bảng đáp án 157. + Dạng 1.3: Tích có hướng và ứng dụng 157. Bảng đáp án 160. + Dạng 1.4: Mặt cầu 160. Bảng đáp án 164. + Dạng 1.5: Phương trình mặt cầu 164. Bảng đáp án 169. Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG 169. + Dạng 2.1: Xác định véc – tơ pháp tuyến 169. Bảng đáp án 170. + Dạng 2.2: Phương trình mặt phẳng 170. Bảng đáp án 174. + Dạng 2.3: Vị trí giữa hai mặt phẳng 175. Bảng đáp án 176. + Dạng 2.4: Tìm tọa độ điểm liên quan mặt phẳng 176. Bảng đáp án 177. + Dạng 2.5: Khoảng cách từ 1 điểm đến mặt phẳng và bài toán liên quan 177. Bảng đáp án 180. + Dạng 2.6: Bài toán liên quan mặt phặt phẳng – mặt cầu 180. Bảng đáp án 184. + Dạng 2.7: Phương trình mặt cầu liên quan mặt phẳng 184. Bảng đáp án 185. + Dạng 2.8: Phương trình mặt phẳng theo đoạn chắn 186. Bảng đáp án 188. + Dạng 2.9: Phương trình mặt phẳng liên quan đến góc 188. Bảng đáp án 190. + Dạng 2.10: Hình chiếu vuông góc của điểm lên mặt phẳng 190. Bảng đáp án 191. + Dạng 2.11: Bài toán liên quan cực trị 191. Bảng đáp án 196. Bài 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 196. + Dạng 3.1: Xác định véc – tơ chỉ phương 196. Bảng đáp án 198. + Dạng 3.2: Phương trình đường thẳng 198. Bảng đáp án 206. + Dạng 3.3: Phương trình mặt phẳng liên quan đường thẳng 206. Bảng đáp án 211. + Dạng 3.4: Điểm liên quan đường thẳng 212. Bảng đáp án 214. + Dạng 3.5: Khoảng cách – góc 215. Bảng đáp án 216. + Dạng 3.6: Vị trị tương đối giữa hai đường thẳng 216. Bảng đáp án 218. + Dạng 3.7: Vị trí tương đối giữa đường thẳng và mặt phẳng 218. Bảng đáp án 221. + Dạng 3.8: Bài toán liên quan: Mặt phẳng – đường thẳng – mặt cầu 221. Bảng đáp án 227. + Dạng 3.9: Hình chiếu của điểm lên đường thẳng 227. Bảng đáp án 229. + Dạng 3.10: Bài toán liên quán: Góc – khoảng cách 230. Bảng đáp án 233. + Dạng 3.11: Bài toán liên quan đến cực trị 233. Bảng đáp án 239.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập trắc nghiệm hình học không gian - Trần Duy Thúc
Tài liệu gồm 53 trang tuyển chọn các bài tập trắc nghiệm hình học không gian từ cơ bản đến nâng cao với đầy đủ các dạng toán điển hình. Lời giới thiệu của thầy (tác giả) Trần Duy Thúc : Chào các Em học sinh thân mến! Lúc đầu khi biết môn Toán sẽ chuyển sang thi dưới hình thức trắc nghiệm các bạn đồng nghiệp của cũng chia sẽ một vài lo âu rằng: “học trò sẽ hỏng hết tư duy, sẽ không biết trình bày, rồi học trò có đủ kiến thức để sau này vào các trường đại học tiếp tục học chăng … ”. Những trăn trở đó rõ ràng là xuất phát từ một tình yêu chân chính cho các học sinh thân yêu. Thật lòng lúc đầu Thầy cũng có những lo âu như vậy. Tuy nhiên, khi ngẫm lại ta thấy rằng. Khi thi trắc nghiệm học trò phải học nhiều hơn, nếu trước đó học một thì bây giờ phải học gấp 10 lần, gấp 100 lần. Để cung cấp cho các Em nguồn bài tập luyên tập Thầy gửi đến các Em quyển Các bài tập trắc nghiệm hình không gian. Tài liệu được chia thành 5 phần: [ads] + Phần 1. Các bài toán về thể tích khối chóp. + Phần 2. Các bài toán về thể tích khối lăng trụ + Phần 3. Các bài toán về khoảng cách + Phần 4. Các bài toán khác + Phần 5. Các bài toán tổng hợp Cuối cùng Thầy cũng không quên nói với các Em rằng mỗi quyển tài liệu điều mang trong nó những kiến thức bổ ít và dù đã cố gắng nhưng tài liệu cũng còn trong đó những sai sót nhất định. Rất mong nhận được ý kiến đóng góp chân thành từ các bạn đọc.
Một số bài tập mặt cầu ngoại tiếp hình chóp - Nguyễn Thanh Hậu
Tài liệu gồm 9 trang trình bày 4 phương pháp xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp và bài tập áp dụng có lời giải chi tiết. Bài toán mặt cầu ngoại tiếp hình chóp xuất hiện nhiều trong các đề kiểm tra, các đề thi vào đại học. Qua thực tế giảng dạy chúng tôi thấy rằng: Nhiều học sinh tỏ ra lúng túng khi gặp các bài toán có liên quan đến mặt cầu. Bài viết này cùng trao đổi với các em và bạn đồng nghiệp một vài kỹ thuật giải toán thông qua các ví dụ về mặt cầu ngoại tiếp hình chóp. Các vấn đề thường gặp liên quan đến bài toán mặt cầu ngoại tiếp hình chóp kiểu như: Chứng minh các điểm nào đó cùng nằm trên một mặt cầu? Xác định tâm và tính bán kính mặt cầu ngoại tiếp hình chóp? Hay tính diện tích mặt cầu ngoại tiếp hình chóp hay thể tích khối cầu ngoại tiếp khối chóp?. [ads] Tóm tắt nội dung tài liệu : I. Cơ sở lí thuyết II. Các phương pháp xác định tâm mặt cầu ngoại tiếp hình chóp Bài toán: Xác định tâm I và tính bán kính R của mặt cầu ngoại tiếp hình chóp SA1A2…An. Phương pháp 1: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Xác định tâm O đường tròn ngoại tiếp đa giác đáy A1A2…An. + Dựng trục Δ của đường tròn ngoại tiếp đa giác đáy A1A2…An (Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy). + Vẽ mặt phẳng trung trực (P) của một cạnh bên bất kì của hình chóp. + Giả sử I= Δ ∩ (P) khi đó I là tâm mặt cầu ngoại tiếp cần dựng. Phương pháp 2: Gọi I là tâm mặt cầu ngoại tiếp hình chóp SA1A2…An. + Dựng trục Δ1 của đường tròn ngoại tiếp đa giác đáy A1A2…An.(Δ là đường thẳng đi qua tâm O đường tròn ngoại tiếp đa giác đáy và vuông góc với mặt phẳng đáy.) + Dựng trục Δ2 của đường tròn ngoại tiếp tam giác của mặt bên sao cho Δ1 và Δ2 đồng phẳng. + Giả sử I = Δ1 ∩ Δ2, khi đó I là tâm mặt cầu ngoại tiếp. Phương pháp 3: Ta chứng minh các đỉnh của hình chóp cùng nhìn hai đỉnh còn lại của hình chóp dưới một góc vuông hoặc tất cả các đỉnh của hình chóp cùng nhìn hai điểm nào đó dưới một góc vuông. Phương pháp 4: Trong không gian ta dự đoán điểm đặc biệt I nào đó rồi chứng minh I cách đều các đỉnh của hình chóp. III. Cách xác định tâm và tính bán kính mặt cầu ngoại tiếp của một số hình chóp đặc biệt IV. Các ví dụ minh họa
Bài tập khối tròn xoay chọn lọc - Trần Sĩ Tùng
Tài liệu gồm 12 trang tuyển chọn các bài tập khối tròn xoay có đáp án, tài liệu do thầy Trần Sĩ Tùng biên soạn. I. Mặt cầu – Khối cầu 1. Định nghĩa 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Vị trí tương đối giữa mặt cầu và đường thẳng 4. Mặt cầu ngoại tiếp – nội tiếp 5. Xác định tâm mặt cầu ngoại tiếp khối đa diện [ads] + Cách 1: Nếu (n – 2) đỉnh của đa diện nhìn hai đỉnh còn lại dưới một góc vuông thì tâm của mặt cầu là trung điểm của đoạn thẳng nối hai đỉnh đó + Cách 2: Để xác định tâm của mặt cầu ngoại tiếp hình chóp – Xác định trục D của đáy (D là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy) – Xác định mặt phẳng trung trực (P) của một cạnh bên – Giao điểm của (P) và D là tâm của mặt cầu ngoại tiếp hình chóp II. Diện tích – Thể tích
Bài tập Mặt cầu - Khối cầu - Nguyễn Đăng Dũng
Tài liệu gồm 9 trang hướng dẫn phương pháp giải các dạng toán mặt cầu, khối cầu và các ví dụ minh họa có lời giải chi tiết. Phương pháp: + Muốn chứng minh nhiều điểm cùng thuộc một mặt cầu ta chứng minh các điểm đó cùng cách đều một điểm O cố định một khoảng R > 0 không đổi. + Muốn chứng minh một đường thẳng D tiếp xúc với maột mặt cầu S (O;R), ta chứng minh d (O;D) = R. + Muốn chứng minh một mặt phẳng (P) tiếp xúc với một mặt cầu S (O;R), ta chứng minh d (O;(P)) = R. + Tập hợp các điểm M trong không gian nhìn đoạn thẳng AB cố định dưới một góc vuông là mặt cầu đường kính AB. [ads]