Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Thị Thập TP HCM

Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Thị Thập TP HCM Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Thị Thập TP HCM Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Thị Thập TP HCM Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Thị Thập, quận 7, thành phố Hồ Chí Minh bao gồm 2 trang với tổng cộng 8 bài toán dạng tự luận. Thời gian làm bài là 120 phút (không tính thời gian phát đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Thị Thập - TP HCM: + Các ống hút nhựa gây hại cho môi trường vì khó phân hủy. Mỗi ngày có 60 triệu ống hút được thải ra môi trường, gây hậu quả nghiêm trọng. Hiện nay, người ta đã chủ động sản xuất các loại ống hút dễ phân hủy. Tại tỉnh Đồng Tháp, có cơ sở sản xuất ống hút "thân thiện với môi trường" được xuất khẩu ra thị trường thế giới và được nhiều nước ưa chuộng. Một ống hút hình trụ có đường kính 12mm, bề dày ống 2mm và chiều dài ống 180mm. Hãy tính thể tích bột gạo cần sử dụng để sản xuất mỗi ống hút (Biết pi ≈ 3,14). + Bình và mẹ lên kế hoạch đi du lịch Huế và Hội An trong 6 ngày. Chi phí trung bình mỗi ngày tại Bà Nà là 3,000,000 đồng và tại Huế là 3,500,000 đồng. Hãy tìm số ngày nghỉ tại mỗi địa điểm, biết tổng chi phí chuyến đi là 20,000,000 đồng. + Một buổi sinh hoạt ngoại khóa có 40 học sinh tham gia, trong đó số học sinh nam nhiều hơn số học sinh nữ. Trong giờ giải lao, mỗi bạn nam mua một ly nước giá 5,000 đồng/ly và mỗi bạn nữ mua một bánh ngọt giá 8,000 đồng/cái. Tổng cộng, các bạn đưa 260,000 đồng và nhận lại 3,000 đồng tiền thối. Hỏi lớp có bao nhiêu học sinh nam và bao nhiêu học sinh nữ?

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x – 2. Vẽ đồ thị (P) và tìm tọa độ giao điểm của (P) với đường thẳng (d) bằng phép tính. + Cho phương trình x2 – 5x + m + 2 = 0 (1) (m là tham số). a) Giải phương trình khi m = 2. b) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt. c) Gọi x1 và x2 là hai nghiệm phân biệt của phương trình (1). Tìm giá trị lớn nhất của biểu thức P. + Trên nửa đường tròn tâm O đường kính AB = 2R, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kì trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác BHDE nội tiếp. b) Chứng minh AD.EC = CD.AC. c) Khi điểm C di động trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB), xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Ninh Bình : + Tìm tất cả các số nguyên dương a và các số nguyên tố p thỏa mãn a2 = 7p4 + 9. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Đường thẳng MN cắt (O) tại các điểm P, Q (P thuộc cung nhỏ AB và Q thuộc cung nhỏ AC). Lấy điểm D trên cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDP cắt AB tại điểm I (I khác B). Đường thẳng DI cắt AC tại K. 1. Chứng minh rằng tứ giác AIPK nội tiếp. 2. Chứng minh rằng PK/PD = QB/QA. 3. Đường thẳng CP cắt đường tròn ngoại tiếp tam giác BDP tại G (G khác P). Đường thằng IG cắt đường thẳng BC tại điểm E. Chứng minh rằng khi điểm D di chuyển trên cạnh BC thì tỉ số CD/CE không đổi. + Cho bảng ô vuông 3 x 3 (gồm ba dòng và ba cột). Người ta ghi tất cả các số thuộc tập hợp {1; 2; 3; 4; 5; 6; 7; 8; 9} vào các ô vuông của bảng, mỗi ô vuông ghi một số, sao cho tổng các số trong mỗi bảng vuông con cỡ 2 x 2 đều bằng nhau. 1. Hãy chỉ ra một cách ghi các số vào bảng thỏa mãn yêu cầu bài toán. 2. Trong tất cả các cách ghi các số vào bảng thỏa mãn yêu cầu bài toán, tìm giá trị lớn nhất của tổng các số trong mỗi bảng vuông con cỡ 2 x 2.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT công lập môn Toán (lớp 10 chuyên Toán – hệ số 2) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Thuận; kỳ thi được diễn ra vào thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Thuận : + Hai bạn An và Bình đang so về số lượng những viên bi mà hai bạn hiện có. An nói với Bình rằng: “Nếu bạn cho tôi một số viên bi từ túi của bạn thì tôi sẽ có số viên bi gấp 6 lần số viên bi của bạn. Còn nếu tôi cho bạn số viên bi như thế, số viên bi của bạn sẽ bằng 1/3 số viên bi của tôi”. Hỏi số viên bi ít nhất mà bạn An có thể có là bao nhiêu? + Cho đường tròn tâm O nội tiếp tam giác ABC, tiếp xúc với các cạnh AB, AC lần lượt tại D và E. Gọi I là tâm đường tròn nội tiếp tam giác ADE. a) Chứng minh A, I, O thẳng hàng và I thuộc đường tròn (O). b) Các phân giác trong của các góc B và C cắt đường thẳng DE lần lượt tại M và N. Chứng minh tứ giác BCMN nội tiếp và tam giác BMC vuông. + Người ta viết các số nguyên 1, 2, 3, 4, 5, 6, 7, 8 lên các đỉnh của một bát giác lồi sao cho tổng các số ở mỗi ba đỉnh liên tiếp không nhỏ hơn k với k nguyên dương. Tìm giá trị lớn nhất của k.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào sáng thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Gia Lai : + Tìm một đa thức bậc ba P(x) với hệ số nguyên nhận x là một nghiệm và P(1) = -6. + Tìm tất cả các số nguyên x, y thỏa mãn: x2y2 – 2x2y + 3×2 + 4xy – 4x + 2y2 – 4y – 1 = 0. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), kẻ ba đường cao AD, BE, CF cắt nhau tại H, lấy điểm M trên cung nhỏ BC (M khác B và C). Gọi P là điểm đối xứng với M qua AB. a) Chứng minh: APB = ACB và tứ giác AHBP nội tiếp một đường tròn. b) Chứng minh H là tâm đường tròn nội tiếp tam giác FDE. c) Tìm giá trị nhỏ nhất của biểu thức T.