Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Diễn Châu 3 - Nghệ An lần 3

Đề thi thử Toán THPTQG 2018 trường THPT Diễn Châu 3 – Nghệ An lần 3 mã đề 101 được biên soạn nhằm kiểm tra năng lực học sinh theo định kỳ, giúp các em được cọ xát thường xuyên, tiếp xúc với các dạng toán vận dụng mới để chuẩn bị cho kỳ thi chính thức THPT Quốc gia 2018 môn Toán, đề thi có đáp án . Trích dẫn đề thi thử Toán 2018 trường Diễn Châu 3 – Nghệ An lần 3 : + Người ta dùng 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Lý và 5 cuốn sách Hóa (các cuốn sách cùng loại thì giống nhau) để làm phần thưởng cho 9 học sinh A, B, C, D, E, F, G, H, I mỗi học sinh nhận được 2 cuốn sách khác thể loại (không tính thứ tự các cuốn sách). Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau. [ads] + Trong không gian Oxyz, cho mặt phẳng (P): (a + b)x – 2ay – bz + b = 0 (a^2 + b^2 ≠ 0) và điểm M(1;1;1). Gọi H là hình chiếu vuông góc của M lên mặt phẳng (P). Khi a, b thay đổi biết quỹ tích các điểm H là một đường tròn cố định, tính bán kính r đường tròn này. + Một hội khuyến học đã kêu gọi sự ủng hộ của các nhà hảo tâm được 120 triệu đồng. Hội khuyến học gửi số tiền đó vào ngân hàng với lãi suất 0, 75% / tháng với dự định hàng tháng rút M triệu đồng làm quà khuyến học cho học sinh nghèo vượt khó. Hội khuyến học bắt đầu trao quà cho học sinh sau một tháng gửi tiền vào ngân hàng. Để số tiền (cả lãi suất và 120 triệu đồng tiền gốc) đủ trao cho học sinh trong 10 tháng thì số tiền M mà hàng tháng Hội khuyến học rút ra tối đa (lấy kết quả chính xác đến chữ số thập phân thứ nhất) là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Thừa Thiên Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023; đề thi có đáp án và lời giải chi tiết mã đề 012 (đáp án và lời giải được thực hiện bởi thầy giáo Trương Văn Tâm). Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Thừa Thiên Huế : + Trong không gian với hệ toạ độ Oxyz, cho mặt cầu S có tâm O, bán kính R = 2 và mặt cầu 2 2 2 S x y z 1 1 1. Mặt phẳng P thay đổi luôn tiếp xúc với hai mặt cầu S và S. Biết rằng P luôn đi qua điểm M a b c cố định. Tính giá trị của biểu thức a b c. + Có bao nhiêu cặp số a d với a d là các số nguyên sao cho đồ thị hàm số ax 24 y x d cắt trục hoành và trục tung tại hai điểm phân biệt A B đồng thời đường thẳng đi qua hai điểm A B đi qua giao hai đường tiệm cận của đồ thị hàm số ax 24 y x d. + Trong không gian với hệ toạ độ Oxyz, cho mặt cầu S có tâm I 1 2 3 bán kính R = 5 và mặt phẳng P x y z 2 2 1 0. Một đường thẳng d đi qua O, song song với P cắt mặt cầu S tại hai điểm phân biệt A B. Tính giá trị lớn nhất của độ dài đoạn thẳng AB.
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử kỳ thi tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Bắc Ninh : + Các nhà tâm lí học sử dụng mô hình hàm số để mô phỏng quá trình học tập của một học sinh như sau: f(x) = K.(1 – 1/e^vx), trong đó K là tổng số đơn vị kiến thức học sinh phải học, v (kiến thức / ngày) là tốc độ tiếp thu của học sinh, x (ngày) là thời gian học, f(x) là số đơn vị kiến thức đã học được sau x ngày. Giả sử một học sinh cần phải học 35 đơn vị kiến thức. Biết rằng tốc độ tiếp thu của học sinh này là v = 0,28. Hỏi học sinh đó sẽ nhớ được bao nhiêu đơn vị kiến thức sau 7 ngày (kết quả làm tròn đến hàng đơn vị). + Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R3. Hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho khoảng cách giữa đường thẳng AB và trục của hình trụ bằng R3/2. Góc giữa đường thẳng AB và trục của hình trụ bằng? + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y − 1)2 + (z − 1)2 = 12 và mặt phẳng (a): x − 2y + 2z + 11 = 0. Lấy điểm M tùy ý trên (a). Từ M kẻ các tiếp tuyến MA, MB, MC đến mặt cầu (S) với A, B, C là các tiếp điểm đôi một phân biệt. Khi M thay đổi thì mặt phẳng (ABC) luôn đi qua điểm cố định H (a;b;c). Tổng a + b + c bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án mã đề 132 – 209 – 357 – 485; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu : + Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông 2km, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là 4km(hình vẽ). Biết rằng anh Ba chèo thuyền với vận tốc 6 km h và chạy bộ trên bờ với vận tốc 10 km h. Khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm B là? + Trong không gian Oxyz, cho ba điểm A 1 4 5 B 3 4 0 C 2 1 0 và mặt cầu 2 2 2 S x y z 1 1 3 4 điểm N thay đổi trên mặt cầu S. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 2 P NA NB NC 3. Giá trị M m bằng? + Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy hình nón sao cho khoảng cách từ O đến AB bằng a và 0 SAO 30 0 SAB 60. Diện tích xung quanh hình nón bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 – 102 – 103 – 104; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang : + Cho khối nón tròn xoay đỉnh S, đáy là đường tròn tâm O, góc ở đỉnh bằng 0 120. Mặt phẳng (Q) thay đổi, đi qua S và cắt khối nón theo thiết diện là tam giác SAB. Biết rằng giá trị lớn nhất diện tích tam giác SAB là 2 2a. Khoảng cách từ O đến mặt phẳng (Q) trong trường hợp diện tích tam giác SAB đạt giá trị lớn nhất là? + Trong tập các số phức, cho phương trình 2 z m z m 2 1 6 2 0 (m tham số thực). Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z. + Xếp ngẫu nhiên 3 quả cầu màu đỏ có kích thước khác nhau và 3 quả cầu màu xanh giống nhau vào một giá chứa đồ nằm ngang có 7 ô trống, mỗi quả cầu được xếp vào một ô. Tính xác suất để 3 quả cầu màu đỏ xếp cạnh nhau và 3 quả cầu màu xanh xếp cạnh nhau?