Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 7 năm 2023 - 2024 phòng GDĐT Gia Viễn - Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Viễn, tỉnh Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT Gia Viễn – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C tỉ lệ theo số học sinh là 765. Nhưng sau đó vì có học sinh thuyên chuyển giữa ba lớp nên phải chia lại theo tỉ lệ 654. Do đó có lớp đã nhận được ít hơn dự định là 12 quyển. Tính số vở mà mỗi lớp thực tế đã nhận được. + Cho hai đa thức: fx x 1 x 3 và 3 2 g x ax bx 3. Xác định hệ số a b của đa thức g x biết nghiệm của đa thức f x cũng là nghiệm của đa thức g x. + Một hộp chứa bốn cái thẻ được đánh số 1; 2; 3; 4, hai thẻ khác nhau thì ghi hai số khác nhau. Lấy ngẫu nhiên hai thẻ cùng một lúc. Tính xác xuất của các biến cố sau: a) A : “Tổng các số trên hai thẻ là số chẵn”. b) B: “Tích các số trên hai thẻ là số chẵn”.

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 7 năm 2022 - 2023 cụm chuyên môn 3T-H-G Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 cụm chuyên môn 3T-H-G trực thuộc phòng GD&ĐT huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 7 năm 2022 – 2023 cụm chuyên môn 3T-H-G Bình Xuyên – Vĩnh Phúc : + Ba lớp 7A, 7B, 7C cùng tham gia trồng cây trong vườn trường, lúc đầu thầy phụ trách dự định giao số cây trồng cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó thầy giao theo tỉ lệ 4:5:6 nên có một lớp trồng nhiều hơn dự định 4 cây. Tính tổng số cây mà ba lớp đã trồng. + Cho tam giác ABC có ba góc nhọn (AB AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. a) Chứng minh rằng DC = BE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. + Cho tam giác ABC cân tại A, gọi D là trung điểm của AC. Trên đoạn BD lấy điểm E sao cho DAE ABD. Chứng minh rằng DAE ECB.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Số A được chia thành ba phần tỉ lệ theo. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 viết được dưới dạng hiệu của hai số chính phương. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE.
Đề HSG cấp cụm Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2023. Trích dẫn Đề HSG cấp cụm Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b – 5| + b – 5. + Tìm các giá trị nguyên của x để biểu thức C 22 3x 4 x có giá trị lớn nhất. + Cho ∆ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. a) Chứng minh rằng: MC = BN. b) Chứng minh rằng: BN ⊥ CM. c) Kẻ AH ⊥ BC (H ∈ BC). Chứng minh AH đi qua trung điểm của MN.
Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.