Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2018 2019 trường Tiên Du 1 Bắc Ninh

Nội dung Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2018 2019 trường Tiên Du 1 Bắc Ninh Bản PDF Đề thi KSCL Toán lớp 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh mã đề 201 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 và thúc đẩy các em không ngừng rèn luyện nâng cao kiến thức môn Toán, đề thi có đáp án các mã đề 201 → 208. Trích dẫn đề thi KSCL Toán lớp 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh : + Cho tập A gồm n phần tử (n ≥ k ≥ 1, k, n thuộc N). Mỗi kết quả của việc lấy ra k phần tử khác nhau của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là: A. Một tổ hợp chập k của n phần tử. B. Một chỉnh hợp chập n của k phần tử. C. Một chỉnh hợp chập k của n phần tử. D. Một hoán vị của k phần tử. + Cho một đa giác đều gồm 2n đỉnh (n ≥ 2, n thuộc N). Chọn ngẫu nhiên 3 đỉnh trong 2n đỉnh của đa giác. Biết xác suất 3 đỉnh được chọn tạo thành một tam giác vuông là 1/5. Trong các mệnh đề sau, mệnh đề nào đúng? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt. B. Tồn tại bốn điểm không cùng thuộc một mặt phẳng. C. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa. D. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT B Bình Lục - Hà Nam
Đề KSCL học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT B Bình Lục – Hà Nam gồm 12 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề KSCL học kỳ 1 Toán 11 : + Cho hình chóp S.ABCD có đáy là hình thang với đáy lớn AB = 3CD. a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Gọi E, F lần lượt là trung điểm AD, BC. Chứng minh rằng đường thẳng EF song song với mp(SAB). c) Gọi G là trọng tâm tam giác SAB. Xác định thiết diện của hình chóp cắt bởi mp(EFG). Thiết diện là hình gì? + Đội tuyển học sinh giỏi khối 11 của trường THPT B Bình Lục có 10 học sinh nữ và 7 học sinh nam. Xét phép thử ban giám hiệu cần chọn ngẫu nhiên 4 học sinh tham dự trại hè. a) Tính số phần tử của không gian mẫu. b) Tính xác suất của biến cố chọn được ít nhất một học sinh nữ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của hai mp(SAD) và (SBC). A. SA. B. Đường thẳng qua điểm S và song song với AD, BC. C. Đường thẳng qua điểm S và song song với AB, CD. D. SO với O là giao điểm của AC và BD.
Đề KSCL học kỳ 1 Toán 11 năm học 2018 - 2019 sở GD và ĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 11 nội dung đề KSCL học kỳ 1 Toán 11 năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc, đề thi có mã đề 135 gồm 2 trang, thời gian làm bài dành cho học sinh là 90 phút, đề được biên soạn theo cấu trúc trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 12 câu, chiếm 3 điểm, phần tự luận gồm 4 câu, chiếm 7 điểm, đề thi có đáp án và lời giải chi tiết các mã đề 135, 286, 193, 948. Trích dẫn đề KSCL học kỳ 1 Toán 11 năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc : + Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho. a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó. b) Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau. + Cho 5 điểm A, B, C, D, E trong đó không có 4 điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho NS = 2ND, I là giao điểm của MN với AD. a) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABCD). b) Gọi J là giao điểm của CD với BI. Xác giao tuyến của mặt phẳng (BMN) với mặt phẳng (SCD), từ đó suy ra thiết diện của hình chóp với mặt phẳng (BMN). c) Gọi K là giao điểm của BI với AC. Chứng minh BM // KN.
Đề KSCL HK1 Toán 11 năm 2018 - 2019 trường Nguyễn Hữu Tiến - Hà Nam
Đề KSCL HK1 Toán 11 năm 2018 – 2019 trường Nguyễn Hữu Tiến – Hà Nam có mã đề 001 gồm 05 trang, đề được biên soạn hoàn toàn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài thi trong 90 phút, đề thi có đáp án. Trích dẫn đề KSCL HK1 Toán 11 năm 2018 – 2019 trường Nguyễn Hữu Tiến – Hà Nam : + Giải bóng đá AFF Suzuki Cup 2018 có 10 đội bóng của 10 quốc gia Đông Nam Á tham gia. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 2 bảng đấu A, B, mỗi bảng có 5 đội. Xác suất để đội Việt Nam không nằm cùng bảng Thái Lan, đồng thời Malaysia không cùng bảng với Philipines bằng? + Bạn Đông có một đồng tiền, bạn Xuân có con súc sắc (đều cân đối, đồng chất). Xét phép thử “Đầu tiên bạn Đông gieo đồng tiền, sau đó bạn Xuân gieo con súc sắc”. Không gian mẫu Ω của phép thử trên là? [ads] + Cho hình chóp S.ABC có đáy ΔABC, gọi M, N, H lần lượt là các điểm thuộc các cạnh AC, BC, SA sao cho MN không song song AB. Gọi O =AN ∩ BM và K = NH ∩ (SBM) (như hình vẽ). Khẳng định nào sau đây là khẳng định đúng? A. K là giao điểm của hai đường thẳng NH với SO. B. K là giao điểm của hai đường thẳng NH với SB. C. K là giao điểm của hai đường thẳng NH với SM. D. K là giao điểm của hai đường thẳng NH với BM.
Đề KSCL giữa học kỳ 1 năm học 2017 - 2018 môn Toán 11 trường THPT Nam Trực - Nam Định
Đề KSCL giữa học kỳ 1 năm học 2017 – 2018 môn Toán 11 trường THPT Nam Trực – Nam Định gồm 4 mã đề, mỗi mã đề gồm 12 câu trắc nghiệm và 4 câu tự luận, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng d có phương trình x + 2y + 3 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đồng dạng có được từ việc thực hiện liên tiếp phép quay tâm O góc quay -90 độ và phép vị tự tâm O tỉ số 5. A. d’: x + 2y – 30 = 0 B. d’: 2x – y + 3/5 = 0 C. d’: 2x – y + 15 =0 D. d’: 2x – y – 15 = 0 [ads] + Trong mặt phẳng tọa độ Oxy. Cho điểm A(1; 2) và đường tròn (C) có tâm I(1; -2), bán kính R = 3 và đường tròn (C’): x^2 + y^2 – 2x – 4 = 0. 1. Tìm ảnh của điểm A qua vị tự tâm O tỉ số k = 3 2. Tìm ảnh của đường tròn (C) qua vị tự tâm O tỉ số k = 3 3. Tìm các điểm M ∈ (C); N ∈ (C’) sao cho vtMN = vtIA + Cho ΔABC có A(1; 4), B(4; 0), C(-2; -2). Phép tịnh tiến TvtBC biến ΔABC thành ΔA’B’C’. Tọa độ trực tâm của ΔA’B’C’ là: A. (-1; 4) B. (4; 1) C. (4; -1) D. (-4; -1)