Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội

Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được tổ chức ngày 23 tháng 12 năm 2020. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Cho hàm số y = (m – 1)x + m – 3 (1) (với m là tham số và m khác 1). a) Khi m = 0, hãy vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy. b) Tìm m để đồ thị hàm số (1) cắt trục tung tại điểm có tung độ bằng 1. c) Gọi A, B lần lượt là giao điểm của đồ thị hàm số (1) với hai trục tọa độ Ox, Oy. Tìm m sao cho tam giác OAB cân. + Ở Hà Nội có một tam giác vuông đặc sắc với đỉnh A (phía Đông) là vị trí Văn Miếu, đỉnh B (phía Bắc) là Nhà Quốc hội, đỉnh C (phía Tây) là Nhà hát Lớn, trong đó A = 90° và B = 72°. Con đường thẳng từ Văn Miếu đến Nhà hát Lớn qua các phố Nguyễn Thái Học, Tràng Thi, Hàng Khay, Tràng Tiền dài khoảng 2,3 km. Hỏi độ dài đoạn đường thẳng từ Văn Miếu đến Nhà Quốc hội là bao nhiêu ki-lô-mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) và dây AB khác đường kính. Kẻ OI vuông góc với AB tại I, tiếp tuyến của đường tròn (O) tại A cắt đường thẳng OI tại M. a) Chứng minh: OI.OM = R^2. b) Chứng minh MB là tiếp tuyến của đường tròn (O) và bốn điểm A, B, M, O cùng thuộc một đường tròn. c) Kẻ đường kính AD của đường tròn (O), tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AB tại điểm N. Chứng minh MD vuông góc với ON.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 1 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 1 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Một chiếc thang có độ dài AB là 4,7m. Cần đặt chân thang cách chân tường một khoảng BC bằng bao nhiêu để nó tạo với mặt đất một góc “an toàn” là 65° (tức là bảo đảm thang không bị đổ khi sử dụng)? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường thẳng (d) có phương trình: y = (m + 4)x – m + 6 (với m là tham số) a. Tìm m để đường thẳng (d) đi qua điểm A(−1; 2). b. Chứng minh rằng khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm cố định đó. + Cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn sao cho OA = 2R. Kẻ các tiếp tuyến AM và AN với đường tròn tâm O (với M, N là các tiếp điểm). 1. Chứng minh rằng: OA vuông góc với MN. Tính độ dài đoạn AM theo R. 2. Kẻ đường kính MB của đường tròn tâm O. Chứng minh rằng: NB song song với AO. 3. Gọi H là giao điểm của OA và MN. Chứng minh rằng: OA = 4OH. 4. Lấy điểm C thuộc cung nhỏ MN, qua C kẻ tiếp tuyến với đường tròn, tiếp tuyến này cắt AM và AN lần lượt tại P và Q. Chứng minh rằng: PQ < R3.