Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 7 - Ngô Văn Thọ

Tài liệu gồm 166 trang phân dạng và hướng dẫn phương pháp giải Toán 7 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : A. PHẦN ĐẠI SỐ CHUYÊN ĐỀ I . SỐ HỮU TỈ + Dạng 1. Thực hiện phép tính + Dạng 2. Biểu diễn số hữu tỉ trên trục số + Dạng 3. So sánh số hữu tỉ + Dạng 4. Tìm điều kiện để một số là số hữu tỉ dương, âm, là số 0 (không dương không âm) + Dạng 5. Tìm các số hữu tỉ nằm trong một khoảng + Dạng 6. Tìm x để biểu thức nguyên + Dạng 7. Các bài toán tìm x + Dạng 8. Các bài toán tìm x trong bất phương trình + Dạng 9. các bài toán tính tổng theo quy luật CHUYÊN ĐỀ II . GIÁ TRỊ TUYỆT ĐỐI + Dạng 1. Tính giá trị biểu thức và rút gọn biểu thức + Dạng 2. |A(x)| = k (Trong đó A(x) là biểu thức chứa x, k là một số cho trước) + Dạng 3. |A(x)| = |B(x)| (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 4. |A(x)| = B(x) (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 5. Đẳng thức chứa nhiều dấu giá trị tuyệt đối + Dạng 6. Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt + Dạng 7. Dạng hỗn hợp + Dạng 8. |A| + |B| = 0 + Dạng 9. |A| + |B| = |A + B| + Dạng 10. |f(x)| > a + Dạng 11. Tìm x sao cho |f(x)| < a + Dạng 12. Tìm cặp giá trị (x; y) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối + Dạng 13. |A| + |B| < m với m > 0 + Dạng 14. Sử dụng bất đẳng thức. |a| + |b| ≥ |a + b| xét khoảng giá trị của ẩn số + Dạng 15. Sử dụng phương pháp đối lập hai vế của đẳng thức + Dạng 16. Tìm GTLN – GTNN của biểu thức CHUYÊN ĐỀ III . LŨY THỪA + Dạng 1. Tính giá trị biểu thức + Dạng 2. Các bài toán tìm x + Dạng 3. Các bài toán so sánh + Dạng 4. Các bài toán chứng minh chia hết CHUYÊN ĐỀ IV . TỈ LỆ THỨC + Dạng 1. Lập tỉ lệ thức từ các số đã cho + Dạng 2. Tìm x từ tỉ lệ thức + Dạng 3. Chứng minh tỉ lệ thức + Dạng 4. Cho dãy tỉ số bằng nhau và một tổng, tìm x, y + Dạng 5. Cho dãy tỉ số, tính giá trị một biểu thức + Dạng 6. Cho dãy tỉ số bằng nhau và một tích, tìm x, y + Dạng 7. Ứng dụng tỉ lệ thức chứng minh bất đẳng thức CHUYÊN ĐỀ V . TỈ LỆ THUẬN – TỈ LỆ NGHỊCH + Dạng 1. Tính hệ số tỉ lệ, biểu diễn x theo y, tính x (hoặc y) khi biết y (hoặc x) + Dạng 2. Cho x và y tỉ lệ thuận hoặc tỉ lệ nghịch, hoàn thành bảng số liệu + Dạng 3. Nhận biết hai đại lượng có tỉ lệ thuận hay tỉ lệ nghịch + Dạng 4.Cho x tỉ lệ thuận (tỉ lệ nghịch) với y, y tỉ lệ thuận (tỉ lệ nghịch) với z. Hỏi mối quan hệ của x và z và tính hệ số tỉ lệ + Dạng 5. Các bài toán đố [ads] CHUYÊN ĐỀ VI . CĂN BẬC 2 + Dạng 1. Tính giá trị biểu thức và viết căn bậc hai của một số + Dạng 2. So sánh hai căn bậc hai + Dạng 3. Tìm x biết √f(x) = a + Dạng 4. Tìm điều kiện xác định của các biểu thức chứa căn + Dạng 5. Chứng minh một số là số vô tỉ ĐỔI SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN RA PHÂN SỐ TỐI GIẢN SỐ THẬP PHÂN HỮU HẠN – SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN + Dạng 1. Nhận biết một phân số là số thập phân hữu hạn hay vô hạn tuần hoàn + Dạng 2. Viết một phân số hoặc một tỉ số dưới dạng số thập phân + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản CHUYÊN ĐỀ VII . HÀM SỐ VÀ ĐỒ THỊ + Dạng 1. Xác định xem đại lượng y có phải là hàm số của đại lượng x không + Dạng 2.Tính giá trị của hàm số tại giá trị của một biến cho trước + Dạng 3. Tìm tọa độ một điểm và vẽ một điểm đã biết tọa độ, tìm các điểm trên một đồ thị hàm số, biểu diễn các điểm lên hình và tính diện tích + Dạng 4. Tìm hệ số a của đồ thị hàm số y = ax + b khi biết một điểm đi qua + Dạng 5. Kiểm tra một điểm có thuộc đồ thị hàm số hay không + Dạng 6. Cách lấy 1 điểm thuộc đồ thị và vẽ đồ thị hàm số y = ax, y = ax + b, đồ thị hàm trị tuyệt đối + Dạng 7. Tìm giao điểm của 2 đồ thị y = f(x) và y = g(x). Chứng minh và tìm điều kiện để 3 đường thẳng đồng quy + Dạng 8. Chứng minh 3 điểm thẳng hàng + Dạng 9. Cho bảng số liệu, hỏi hàm số xác định bởi công thức nào, hàm số là đồng biến hay nghịch biến + Dạng 10. Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc CHUYÊN ĐỀ VIII . THỐNG KÊ + Dạng 1. Khai thác thông tin từ bảng thống kê + Dạng 2. Lập bảng tần số và rút ra nhận xét + Dạng 3. Dựng biểu đồ đoạn thẳng hoặc biểu đồ hình chữ nhật + Dạng 4. Vẽ biểu đồ hình quạt + Dạng 5. Tính số trung bình cộng, tìm Mốt của dấu hiệu CHUYÊN ĐỀ IX . BIỂU THỨC ĐẠI SỐ + Dạng 1. Đọc và viết biểu thức đại số theo yêu cầu bài toán + Dạng 2. Tính giá trị biểu thức đại số + Dạng 3. Tìm GTLN, GTNN + Dạng 4. Bài tập đơn thức + Dạng 5. Bài tập đa thức + Dạng 6. Đa thức một biến + Dạng 7. Tìm nghiệm của đa thức 1 biến + Dạng 8. Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a B. PHẦN HÌNH HỌC CHUYÊN ĐỀ I . ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG. GÓC ĐỐI ĐỈNH CHUYÊN ĐỀ II . TAM GIÁC. TỔNG BA GÓC CỦA MỘT TAM GIÁC CHUYÊN ĐỀ III . QUAN HỆ GIỮA CÁC YẾU TỐ CỦA TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất ba đường cao trong tam giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường cao trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được khái niệm về đường cao của tam giác, tính chất ba đường cao trong tam giác và các đường đồng quy trong tam giác cân. Kĩ năng: + Vận dụng được các tính chất của đường cao để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định trực tâm của tam giác. Để xác định trực tâm của tam giác, ta đi tìm giao điểm của hai đường cao trong tam giác đó. Dạng 2 : Chứng minh hai đường thẳng vuông góc. Cách 1. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm. Cách 2. Sử dụng định lí trong tam giác cân thì đường trung tuyến, đường phân giác ứng với cạnh đáy đồng thời là đường cao. Cách 3. Hai đường thẳng song song với nhau thì cùng vuông góc với đường thẳng thứ ba. Dạng 3 : Các bài toán tổng hợp. Sử dụng tính chất ba đường cao trong tam giác đồng quy tại một điểm.
Chuyên đề tính chất ba đường trung trực của tam giác
Tài liệu gồm 11 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường trung trực của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Nắm được tính chất đường trung trực của tam giác cân. + Nắm được tính chất ba đường trung trực tam giác. Kĩ năng: + Vận dụng tính chất ba đường trung trực của tam giác để giải toán. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định tâm đường tròn ngoại tiếp tam giác. + Giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. + Ba đường trung trực trong tam giác cắt nhau tại một điểm. Do đó để xác định tâm đường tròn ngoại tiếp tam giác, ta đi xác định giao điểm của hai đường trung trực. Dạng 2 : Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. Trong một tam giác, giao điểm của hai đường trung trực thuộc đường trung trực còn lại của tam giác đó. Dạng 3 : Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. Sử dụng tính chất: “Ba đường trung trực trong tam giác cắt nhau tại một điểm”.
Chuyên đề tính chất đường trung trực của một đoạn thẳng
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất đường trung trực của một đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định lí thuận và đảo về tính chất các điểm thuộc đường trung trực. Kĩ năng: + Vận dụng được các định lí để giải toán. + Ứng dụng trong một số bài toán thực tế. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Vận dụng tính chất của đường trung trực. Sử dụng định lí 1: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó”. Dạng 2 : Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. – Để chứng minh điểm M thuộc đường trung trực của đoạn thẳng AB, ta dùng định lí 2: “Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó” hoặc dùng định nghĩa đường trung trực. – Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm cách đều A và B, hoặc dùng định nghĩa đường trung trực. Dạng 3 : Xác định vị trí của điểm thỏa mãn yêu cầu đề bài. Sử dụng định lí 2: “Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó” để xác định một điểm nằm trên đường trung trực của đoạn thẳng. Dạng 4 : Sử dụng tính chất đường trung trực vào bài toán về cực trị. – Sử dụng tính chất đường trung trực để thay đổi độ dài một đoạn thẳng bằng độ dài một đoạn thẳng khác bằng nó. – Sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất, giá trị lớn nhất.
Chuyên đề tính chất ba đường phân giác của tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tính chất ba đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy trong tam giác. Mục tiêu : Kiến thức: + Phát biểu được định nghĩa đường phân giác của tam giác, tính chất đường phân giác trong tam giác cân. + Phát biểu được định lí về ba đường phân giác của tam giác. Kĩ năng: + Vận dụng được các định nghĩa, định lí để chứng minh các tính chất hình học. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Từ đó tính độ dài đoạn thẳng, số đo góc. Sử dụng các tính chất: + Giao điểm của hai đường phân giác của một tam giác nằm trên đường phân giác thứ ba của tam giác đó. + Giao điểm các đường phân giác của tam giác cách đều ba cạnh của tam giác. Dạng 2 : Chứng minh ba đường đồng quy, ba điểm thẳng hàng. Vận dụng tính chất ba đường phân giác của tam giác: “Ba đường phân giác của một tam giác cùng đi qua một điểm. Điểm này cách đều ba cạnh của tam giác đó”. Dạng 3 : Đường phân giác của các tam giác đặc biệt. Sử dụng tính chất trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4 : Chứng minh mối quan hệ trong các góc. – Vận dụng các tính chất đường phân giác của một góc để tìm mối quan hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng o 180.