Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình học không gian Toán 12 - Lê Quang Xe

Tài liệu gồm 411 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tóm tắt lý thuyết, ví dụ minh họa và bài tập rèn luyện chuyên đề hình học không gian trong chương trình môn Toán 12. CHƯƠNG 1 . ĐA DIỆN 1. §1 – THỂ TÍCH KHỐI ĐA DIỆN 1. A Tóm tắt lý thuyết 1. B Ví dụ minh họa 4. C Bài tập rèn luyện 12. + Dạng 1.Mở đầu khối đa diện 12. + Dạng 2.Thể tích khối lăng trụ đứng 22. + Dạng 3.Thể tích khối chóp có cạnh bên vuông góc với đáy 55. + Dạng 4.Thể tích khối chóp có mặt bên vuông góc với đáy 89. + Dạng 5.Thể tích khối chóp đều 121. + Dạng 6.Thể tích khối tứ diện đặc biệt 151. + Dạng 7.Tỉ số thể tích 197. + Dạng 8.Các bài toán thể tích chọn lọc 244. + Dạng 9.Bài toán góc – khoảng cách 284. + Dạng 10.Cực trị khối đa diện 325. CHƯƠNG 2 . KHỐI TRÒN XOAY 344. §1 – MẶT NÓN, MẶT TRỤ & MẶT CẦU 344. A Tóm tắt lý thuyết 344. B Ví dụ 346. C Bài tập rèn luyện 348. + Dạng 1.Các yếu tố liên quan đến khối nón, Khối trụ 348. + Dạng 2.Khối tròn xoay nội, ngoại tiếp đa diện 370. + Dạng 3.Cực trị và toán thực tế về khối tròn xoay 381.

Nguồn: toanmath.com

Đọc Sách

Một số dạng toán liên quan đến thể tích khối lăng trụ
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối lăng trụ trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối lăng trụ có cạnh bên vuông góc với đáy. Phương pháp: Cho hình lăng trụ đứng ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Dạng 2 : Khối lăng trụ đều. Phương pháp: Cho hình lăng trụ tam giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABC. Phương pháp: Cho hình lăng trụ tứ giác đều ABC A B C. + Đường cao: AA. + Thể tích khối lăng trụ: V AA SABCD. Dạng 3 : Khối hộp chữ nhật – Khối lập phương. Phương pháp: Cho hình hộp chữ nhật ABCD A B C D. Thể tích khối hộp: V abc. Phương pháp: Cho hình lập phương ABCD A B C D. + Thể tích khối lập phương: 3 V a. Dạng 4 : Khối lăng trụ xiên bất kì. Phương pháp: Cho hình lăng trụ ABC A B C. + Đường cao: AH H là hình chiếu vuông góc của A trên ABC. + Thể tích khối lăng trụ: V AH SABC.
Một số dạng toán liên quan đến thể tích khối chóp
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, hướng dẫn giải một số dạng toán liên quan đến thể tích khối chóp trong chuyên đề thể tích khối đa diện môn Toán 12. Dạng 1 : Khối chóp có cạnh bên vuông góc với đáy. Phương pháp: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy. + Đường cao: SA. + Thể tích khối chóp: V = 1/3.SA.SABCD. Dạng 2 : Khối chóp có mặt bên là tam giác cân tại S và vuông góc với đáy. Phương pháp: Cho hình chóp S.ABCD có mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. + Đường cao: SH H là trung điểm AB. + Thể tích khối chóp: V = 1/3.SH.SABCD. Dạng 3 : Khối chóp có hình chiếu của S trên mặt đáy là điểm H. Phương pháp: Cho hình chóp S.ABC có điểm H là hình chiếu vuông góc của S trên mặt đáy. + Đường cao: SH. + Thể tích khối chóp: V = 1/3.SH.SABC. Dạng 4 : Khối chóp có hai mặt bên cùng vuông góc với mặt đáy. Phương pháp: Cho hình chóp S.ABCD có hai mặt (SAB) và (SBC) cùng vuông góc với mặt phẳng đáy. + Đường cao: SB. + Thể tích khối chóp: V = 1/3.SB.SABCD. Dạng 5 : Khối chóp đều. Phương pháp: Cho hình chóp tam giác đều S.ABC. + Đường cao: SG với G là trọng tâm tam giác ABC. + Thể tích khối chóp: V = 1/3.SG.SABC. Phương pháp: Cho hình chóp tứ giác đều S.ABCD. + Đường cao: SO với O là tâm hình vuông ABCD. + Thể tích khối chóp: V = 1/3.SO.SABCD. BÀI TẬP TRẮC NGHIỆM MINH HỌA. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm
Tài liệu gồm 105 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, trình bày một số ứng dụng hay về tỷ số thể tích trong việc giải toán trắc nghiệm. Từ khi Bộ Giáo Dục và Đào Tạo chuyển hướng sang thi trắc nghiệm, việc dạy và học môn toán cũng có sự thay đổi để đáp ứng đối với kì thi. Giáo viên phải dạy học sinh hiểu rõ bản chất và cách làm nhanh nhất để đi đến kết quả. Còn học sinh mong muốn mình giải quyết một bài toán với con đường đơn giản nhất và đáp số chính xác nhất. Sau đây tôi xin biên soạn lại một vấn đề rất hay gặp trong các kì thi thử và thi THPTQG, giúp các em học sinh giải quyết rất nhanh các bài toán liên quan đến thể tích khối đa diện. I. KIẾN THỨC CƠ SỞ + Hai hình chóp có cùng diện tích đáy thì tỷ số thể tích của chúng chính là tỷ số của đường cao và ngược lại. + Với khối chóp tam giác ta có tính chất quen thuộc sau: Cho khối chóp tam giác S ABC. Mặt phẳng (P) cắt các đường thẳng SA SB SC lần lượt tại A B C. Khi đó ta có S ABC V SA SB SC V SA SB SC. II. MỘT SỐ TÍNH CHẤT 1. Tính chất 1. Cho hình chóp S ABCD đáy ABCD là hình bình hành. Mặt phẳng (P) SA SB SC SD lần lượt tại A B C D. Khi đó ta có SA SC SB SD SA SC SB SD. 2. Tính chất 2. Cho lăng trụ 1 1 1 ABC A B C có các điểm M N P lần lượt thuộc các cạnh 1 1 1 AA BB CC sao cho 1 1 1 AM BN CP x y z AA BB CC. Khi đó ta có tỷ số 1 1 1 3 ABCMNP ABC A B C V x y z. 3. Tính chất 3. Cho hình hộp ABCD A B C D. Mặt phẳng cắt các cạnh AA BB CC DD lần lượt tại M N P Q sao cho DD AM BN CP DQ x y z t AA BB CC. Khi đó ta có: a. x z y t. b. 4 2 2 ABCDMNQP ABCD A B C D V x y z t x z y t. III. MỘT SỐ BÀI TẬP ÁP DỤNG
Bài giảng phương pháp trải hình trên mặt phẳng - Trần Thị Hiền
Tài liệu gồm 17 trang, được biên soạn bởi cô giáo Trần Thị Hiền (Tổ Toán trường THPT chuyên Hạ Long, tỉnh Quảng Ninh), hướng dẫn phương pháp trải hình trên mặt phẳng để giải nhanh một số bài toán về hình học không gian. Khi giải một bài toán về tứ diện mà các dữ kiện của nó liên quan đến tổng các góc phẳng hoặc tổng các cạnh … thì việc phẳng hoá tứ diện (tức là trải phẳng tứ diện đó lên một mặt phẳng) sao cho phù hợp sẽ cho ta một lời giải gọn gàng và dễ hiểu. Trong bài viết nhỏ này tôi xin trình bày một số bài toán áp dụng phương pháp này.