Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối hè năm 2019 môn Toán 11 trường THPT chuyên Bắc Ninh

Với mục đích kiểm tra lại các kiến thức Toán 10 của học sinh khối 11 sau quá trình nghỉ hè kéo dài, vừa qua, trường THPT chuyên Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng môn Toán cuối kỳ nghỉ hè năm 2019, qua đây, học sinh sẽ ôn tập lại các kiến thức Toán 10, nhằm làm nền tảng vững chắc trước khi vào học chương trình môn Toán lớp 11. Đề kiểm tra cuối hè năm 2019 môn Toán 11 trường THPT chuyên Bắc Ninh được dành cho học sinh các lớp chuyên Toán, đề được biên soạn theo dạng đề tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán 11 trường THPT chuyên Bắc Ninh : + Một công ty muốn làm một đường ống dẫn dầu từ một kho ở vị trí A ở trên bờ biển đến một vị trí B trên một hòn đảo (xem hình minh họa). Vị trí B trên hòn đảo cách bờ biển 6 km, gọi C là điểm trên bờ biển sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một ví trí D trên đoạn bờ biển AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí cho việc lắp đặt đường ống dẫn là thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. [ads] + Cho R là tập các số tự nhiên có 7 chữ số lập được từ hai chữ số 1 và 2. Ta xây dựng tập con S của R theo quy tắc sau: phần tử đầu tiên của S có thể chọn bất kì phần tử nào của R; hai phần tử phân biệt của S phải có ít nhất ba cặp chữ số ở ba hàng nào đó khác nhau. (chẳng hạn hai phần tử 1.111.111 và 1.111.222 là phân biệt vì có ba cặp chữ số ở hàng trăm, chục, đơn vị là khác nhau). Chứng tỏ rằng, theo quy tắc này, với mọi cách xây dựng tập S, số phần tử của S không vượt quá 16. + Cho tam giác ABC có AB < AC, đường tròn w nội tiếp tam giác ABC có tâm I và tiếp xúc với các cạnh BC, CA, AB lần lượt tại các điểm D, E, F. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn ngoại tiếp tam giác ABC tại hai điểm A, P đồng thời cắt đường thẳng AD tại hai điểm A, K. Hai đường thẳng PI, EF cắt nhau tại điểm H, đường tròn ngoại tiếp tam giác DKH cắt đường tròn w tại hai điểm D, N. a) Chứng minh rằng hai đường thẳng DH và EF vuông góc với nhau. b) Chứng minh rằng đường tròn ngoại tiếp tam giác BNC tiếp xúc với đường tròn w.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát lần 1 Toán 11 năm 2019 - 2020 trường Nguyễn Đăng Đạo - Bắc Ninh
Ngày … tháng 10 năm 2019, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất dành cho học sinh khối 11, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát lần 1 Toán 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 001, đề gồm 50 câu trắc nghiệm thuộc chương trình Toán 10 và chương trình Toán 11 đã học, thời gian làm bài 90 phút. Trích dẫn đề khảo sát lần 1 Toán 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Một cửa hàng mua sách từ nhà xuất bản với giá 3USD/ cuốn. Cửa hàng bán sách với giá 15USD/ cuốn, tại giá bán này mỗi tháng cửa hàng sẽ bán được 200 cuốn. Cửa hàng có kế hoạch giảm giá để kích thích sức mua và họ ước tính rằng cứ giảm đi 1 USD/ cuốn thì mỗi tháng sẽ bán nhiều hơn 20 cuốn. Hỏi rằng cửa hàng nên bán sách với giá bao nhiêu một cuốn để thu được lợi nhuận một tháng là nhiều nhất? [ads] + Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Điểm G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng EG và mp (ACD) là: A. Điểm F. B. Giao điểm của đường thẳng EG và CD. C. Giao điểm của đường thẳng EG và AC. D. Giao điểm của đường thẳng EG và AF. + Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD (AB // CD và AB > CD) có AD = DC, D(3;3). Đường thẳng AC có phương trình x – y – 2 = 0, đường thẳng AB đi qua M(-1;-1). Biết phương trình đường thẳng BC có dạng ax + by + c = 0 với a, b, c thuộc Z và a, b, c đôi một nguyên tố cùng nhau, c < 0. Tính a + b + c?
Đề khảo sát Toán 11 lần 1 năm 2019 - 2020 trường THPT Lương Tài 2 - Bắc Ninh
Nhằm mục đích kiểm tra đánh giá giai đoạn giữa học kỳ 1, Chủ Nhật ngày 27 tháng 10 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kiểm tra khảo sát chất lượng lần thứ nhất môn Toán 11 năm học 2019 – 2020. Đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh với 50 câu trắc nghiệm thuộc các nội dung Toán 11 đã học, đề gồm 04 trang, thời gian làm bài 90 phút, đề kiểm tra có đáp án. Trích dẫn đề khảo sát Toán 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh : + Đường tròn sẽ không thay đổi bán kính khi ta thực hiện liên tiếp các phép nào sau đây: A. Thực hiện phép đồng dạng tỉ số k = 2 rồi thực hiện liên tiếp phép dời hình bất kỳ. B. Thực hiện phép quay rồi thực hiện liên tiếp phép đồng dạng bất kỳ. C. Thực hiện phép vị tự tỉ số k = -1 rồi thực hiện liên tiếp phép đồng dạng tỉ số k = 2. D. Thực hiện phép dời hình bất kỳ rồi thực hiện liên tiếp phép vị tự tỉ số k = -1. [ads] + Cho 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta cấu tạo thành các đề thi. Biết rằng trong đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu hỏi bài tập. Hỏi có thể tạo được bao nhiêu đề như trên? + Cho đường tròn (C): x^2 + y^2 = 2. Phép vị tự tâm I(a;b) tỉ số k = -2 biến đường tròn (C) thành đường tròn (T) sao cho (C) và (T) tiếp xúc ngoài. Tìm tất cả các giá trị tham số m để trên đường thẳng x – y + m = 0 tồn tại duy nhất tâm vị tự I như trên.
Đề kiểm tra khảo sát nửa kỳ 1 Toán 11 trường THPT Phan Huy Chú - Hà Nội
Ngày …/10/2019, trường THPT Phan Huy Chú – Đống Đa – Hà Nội tổ chức kiểm tra khảo sát nửa kỳ 1 môn Toán 11 năm học 2019 – 2020. Đề kiểm tra khảo sát nửa kỳ 1 Toán 11 trường THPT Phan Huy Chú – Hà Nội gồm 03 trang với 25 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề kiểm tra khảo sát nửa kỳ 1 Toán 11 trường THPT Phan Huy Chú – Hà Nội : + Trong kì thi học sinh giỏi có 10 học sinh đạt tối đa điểm môn Toán trong đó có 4 học sinh nam và 6 học sinh nữ. Nhà trường muốn chọn một nhóm 5 học sinh trong 10 học sinh trên để tham dự buổi lễ tuyên dương khen thưởng. Tính số cách chọn một nhóm gồm 5 học sinh mà có cả nam và nữ và số học sinh nam ít hơn số học sinh nữ. [ads] + Từ thành phố A đến thành phố B có 3 con đường, từ thành phố B đến thành phố C có 4 con đường, và từ thành phố C đến D có 5 con đường. Hỏi có bao nhiêu cách đi từ thành phố A đến D (biết rằng để đi từ thành phố A đến D thì bắt buộc phải qua thành phố B, C và các thành phố chỉ đi qua 1 lần). + Cho hình chóp S.ABCD có đáy ABCD là hình thang, AB = 3a, AD = CD = a. Mặt bên SAB là tam giác cân đinh S và SA = 2a, mặt phẳng (α) song song với (SAB) cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MN // (SCD). b) Đặt x = AM (0 < x < a). Tính chu vi MNPQ theo x, a.
Đề thi sát hạch Toán 11 lần 1 năm 2019 - 2020 trường Đoàn Thượng - Hải Dương
Với mục đích kiểm tra đánh giá chất lượng đầu năm học 2019 – 2020, để theo dõi từng giai đoạn học tập của học sinh, vừa qua, trường THPT Đoàn Thượng, tỉnh Hải Dương tổ chức kỳ thi sát hạch môn Toán lần thứ nhất đối với học sinh khối 11 của nhà trường. Đề thi sát hạch Toán 11 lần 1 năm học 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương với mã đề 132, đề gồm 02 trang được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 4,5 điểm, phần tự luận gồm 04 câu, chiếm 5,5 điểm, thời gian học sinh làm bài là 90 phút, nội dung đề tập trung chủ yếu vào các chủ đề Toán 11 mà học sinh vừa được học, cùng với một số bài toán trong chương trình Toán 10, phần trắc nghiệm có đáp án. [ads] Trích dẫn đề thi sát hạch Toán 11 lần 1 năm 2019 – 2020 trường Đoàn Thượng – Hải Dương : + Đội văn nghệ của trường THPT Đoàn Thượng, tỉnh Hải Dương có 5 nam và 7 nữ. Để chuẩn bị cho lễ khai giảng năm học 2019 – 2020 đoàn trường cần chọn 5 bạn để tham gia biểu diễn. Tính xác suất để 5 bạn được chọn: a) Có 2 bạn nam và 3 bạn nữ. b) Có ít nhất 1 bạn nữ. + Một người làm vườn có 12 cây giống gồm 6 cây xoài, 4 cây mít và 2 cây ổi. Người đó muốn chọn ra 6 cây giống để trồng. Tính xác suất để 6 cây được chọn, mỗi loại có đúng 2 cây. + Giải bóng đá V-LEAGUE 2019 có tất cả 14 đội bóng tham gia, các đội bóng thi đấu vòng tròn 2 lượt. Hỏi giải đấu có tất cả bao nhiêu trận đấu?