Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh lớp 10 năm 2019 - 2020 trường Trương Công Định - Hải Phòng

Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 trường THCS Trương Công Định, quận Lê Chân, thành phố Hải Phòng gồm 2 trang, đề gồm 5 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề khảo sát Toán tuyển sinh lớp 10 năm 2019 – 2020 trường Trương Công Định – Hải Phòng : + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2(m + 3)x – 2m + 2 (m là tham số và m thuộc R). a) Với m = 5, hãy tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d). b) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt nằm cùng phía bên phải trục tung. + Theo Điều 6 Nghị định 171/2013/NĐ-CP về xử phạt vi phạm hành chính trong lĩnh vực giao thông đường bộ và đường sắt. Cụ thể: Đối với ôtô: – Phạt tiền từ 600.000 đồng đến 800.000 đồng nếu điều khiển xe chạy quá tốc độ quy định từ 05 km/h đến dưới 10 km/h. – Phạt tiền từ 2 triệu đồng đến 3 triệu đồng nếu điều khiển xe chạy quá tốc độ quay định từ 10 km/h đến 20 km/h. – Phạt tiền từ 4 triệu đồng đến 6 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 20 km/h đến 35 km/h. – Phạt tiền từ 7 triệu đồng đến 8 triệu đồng nếu điều khiển xe chạy quá tốc độ quy định trên 35 km/h; điều khiển xe đi ngược chiều trên đường cao tốc, trừ các xe ưu tiên đang đi làm nhiệm vụ khẩn cấp theo quy định. [ads] Áp dụng các quy định trên để giải bài toán sau: Một cơ quan tổ chức di du lịch bằng 2 xe ô tô qua đường cao tốc Hải Phòng – Hà Nội dài 120km. Hai xe cùng khởi hành một lúc tại đầu đường cao tốc phía Hải Phòng, xe thứ nhất chạy chậm hơn xe thứ hai 44 km/h do đó xe thứ nhất đến hết đường cao tốc chậm hơn xe thứ hai là 22 phút. Biết rằng khi đến cuối đường có trạm kiểm soát tốc độ, hỏi khi đó có xe nào trong hai xe bị xử phạt vi phạm tốc độ hay không? Mức xử phạt là bao nhiêu tiền? (Giả sử vận tốc hai xe không đổi trên đường cao tốc, vận tốc tối đa cho phép là 120 km/h). + Cho hình chữ nhật ABCD có BC = 3cm, AB = 4cm. Quay hình chữ nhật đó một vòng quanh AB được một hình trụ. Tính diện tích xung quanh của hình trụ đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề gồm 02 trang với 20 câu trắc nghiệm (3.0 điểm) và 04 câu tự luận (7.0 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Hưởng ứng phong trào quyên góp sách ủng hộ các bạn học sinh vùng cao, đợt I hai trường A và B ủng hộ được 1370 quyển sách. Đợt II, số sách trường A ủng hộ tăng 20%, số sách trường B ủng hộ tăng 15% so với đợt I, do đó tổng số sách hai trường ủng hộ đợt II là 1608 quyển. Tính số sách mỗi trường đã ủng hộ trong đợt I. + Cho đường tròn (O), từ điểm A nằm ngoài đường tròn, kẻ hai tiếp tuyến AB, AC với (O) (B và C là tiếp điểm). Kẻ CD vuông góc AB (D thuộc AB), CD cắt (O) tại điểm thứ hai là M. Kẻ ME vuông góc AC (E thuộc AC), MF vuông góc BC (F thuộc BC). 1. Chứng minh: tứ giác MDBF nội tiếp. 2. Chứng minh: DF = DM.DC. 3. Gọi H là giao điểm của MB và FD, I là giao điểm của MC và EF. Trên đoạn AC lấy điểm K sao cho CK = HF. Chứng minh ba điểm H, I, K thẳng hàng. + Cho (O;R) và đường thẳng a, gọi d là khoảng cách từ O đến a. Phát biểu nào sau đây là sai? A. Nếu d < R thì đường thẳng a cắt (O;R). B. Nếu d = R thì đường thẳng a tiếp xúc với (O;R). C. Nếu d > R thì đường thẳng a không cắt (O;R). D. Nếu d = R thì đường thẳng a đi qua tâm O của (O;R).
Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. + Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. 1. Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. 2. Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. 3. Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất.
Đề thi thử Toán tuyển sinh 10 năm 2022 2023 trường THCS Chu Văn An Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 trường THCS Chu Văn An, huyện Nga Sơn, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề thi thử Toán tuyển sinh 10 năm 2022 – 2023 trường THCS Chu Văn An – Thanh Hoá : + Cho hai đường thẳng (d): y = -x + m + 2 và (d’): y = (m2 – 2)x + 3. Tìm m để (d) và (d’) song song với nhau. + Cho phương trình x2 + 5x + m – 2 = 0 (1) với m là tham số a. Giải phương trình (1) khi m = 6 b. Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 sao cho biểu thức S = (x1 – x2)2 + 8x1x2 đạt giá trị lớn nhất. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O). Hai đường cao BE và CF của tam giác ABC cắt nhau tại H a) Chứng minh bốn điểm B C E F cùng thuộc một đường tròn b) Chứng minh đường thẳng OA vuông góc với đường thẳng EF c) Gọi K là trung điểm của đoạn thẳng BC. Đường thẳng AO cắt đường thẳng BC tại điểm I, đường thẳng EF cắt đường thẳng AH tại điểm P. Chứng minh tam giác APE đồng dạng với tam giác AIB và đường thẳng KH song song với đường thẳng IP.
Đề thi thử Toán vào lớp 10 chuyên năm 2022 lần 1 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2022 – 2023 lần 1 trường THPT chuyên Đại học Sư Phạm Hà Nội. Trích dẫn đề thi thử Toán vào lớp 10 chuyên năm 2022 lần 1 trường chuyên ĐHSP Hà Nội : + Một người có kế hoạch đi xe máy từ A đến B với vận tốc không đổi trong khoảng thời gian dự định. Nếu tăng vận tốc thêm 4 km/h thì người đó đến B sớm 12 phút, nếu giảm vận tốc đi 4 km/h thì người đó đến B muộn 15 phút. Tính độ dài quãng đường AB. + Cho tam giác nhọn ABC nội tiếp đường tròn (O;R) và có số đo góc A bằng 60°. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Tia Al cắt đường tròn (O;R) tại điểm thứ hai D (D khác A). Chứng minh rằng: a) Tứ giác BDCO là hình thoi. b) Các điểm B, I, O, C cùng thuộc một đường tròn. c) IB + IC < 2R. + Tìm tất cả các số thực m khác 1 sao cho đồ thị hàm số y = (m – 1)x + m + 6 cắt hai trục tọa độ tại các điểm có hoành độ và tung độ là các số nguyên.