Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập hình lăng trụ đứng, hình chóp đều

Tài liệu gồm 45 trang, tóm tắt lý thuyết, các dạng toán và bài tập hình lăng trụ đứng, hình chóp đều, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Hình học chương 4. A. HÌNH LĂNG TRỤ ĐỨNG. Bài 1. Hình hộp chữ nhật. + Dạng 1. Kể tên các đỉnh, các cạnh, các mặt của hình hộp chữ nhật. + Dạng 2. Nhận biết một điểm thuộc một đường thẳng, thuộc một mặt phẳng. + Dạng 3. Vẽ hình biểu diễn của hình hộp chữ nhật. Gấp hình để được hình hộp chữ nhật. Bài 2. Hình hộp chữ nhật (tiếp). + Dạng 1. Vị trí của hai đường thẳng trong không gian. + Dạng 2. Nhận biết đường thẳng song song với mặt phẳng, mặt phẳng song song với mặt phẳng. + Dạng 3. Tìm giao tuyến của hai mặt phẳng. + Dạng 4. Tính diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật. Bài 3. Thể tích của hình hộp chữ nhật. + Dạng 1. Tính thể tích của hình hộp chữ nhật, tính một yếu tố của hình hộp chữ nhật. + Dạng 2. Đường chéo của hình hộp chữ nhật. + Dạng 3. Nhận biết đường thẳng vuông góc với mặt phẳng, mặt phẳng vuông góc với mặt phẳng. + Dạng 4. Tính độ dài ngắn nhất trên các mặt phẳng của hình hộp chữ nhật, đếm số hình lập phương nhỏ được sơn ở các mặt hình lập phương lớn. Bài 4. Hình lăng trụ đứng. + Dạng 1. Tìm số cạnh, số mặt, số đỉnh của hình lăng trụ đứng. + Dạng 2. Vẽ hình lăng trụ đứng. Gấp hình để tạo thành hình lăng trụ đứng. + Dạng 3. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Bài 5. Diện tích xung quan củahình lăng trụ đứng. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần, tính một yếu tố của lăng trụ đứng. + Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Bài 6. Thể tích của hình lăng trụ đứng. + Dạng 1. Tính thể tích, tính các yếu tố của hình lăng trụ đứng. + Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. B. HÌNH CHÓP ĐỀU. Bài 7. Hình chóp đều và hình chóp cụt đều. + Dạng 1. Tính số mặt, số đỉnh, số cạnh của hình chóp. + Dạng 2. Nhận dạng hình chóp đều. Tính chất hình chóp đều. + Dạng 3. Vẽ hình chóp đều. Gấp hình để tạo thành hình chóp đều. + Dạng 4. Chứng minh các quan hệ bằng nhau, song song, vuông góc trong hình chóp. Bài 8. Diện tích xung quanh của hình chóp đều. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần, tính một yếu tố của hình chóp đều. + Dạng 2. Tính diện tích xung quanh của hình chóp cụt đều. Bài 9. Thể tích của hình chóp đều. + Dạng 1. Tính thể tích, tính một yếu tố của hình chóp tứ giác đều. + Dạng 2. Tính thể tích, tính một yếu tố của hình chóp tam giác đều, lục giác đều. ÔN TẬP CHƯƠNG IV. a. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình lăng trụ đứng. 2. Thí dụ. B. Phương pháp giải toán C. Phiếu bài tự luyện
Chuyên đề hình hộp chữ nhật
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình hộp chữ nhật. 2. Mặt phẳng và đường thẳng. 3. Hai đường thẳng song song trong không gian. 4. Đường thẳng song song với mặt phẳng. Hai mặt phẳng song song. B. Phương pháp giải toán Dạng toán 1: Chứng minh các tính chất của hình hộp chữ nhật. Dạng toán 2: Tính toán các yếu tố của hình hộp chữ nhật.
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.
Chuyên đề các trường hợp đồng dạng của tam giác vuông
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề các trường hợp đồng dạng của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT 1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông. Hai tam giác vuông đồng dạng với nhau nếu: + Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia. + Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia. 2. Dấu hiệu đặc biệt nhận biết hai tam giác vuông đồng dạng. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng. 3. Tỉ số hai đường cao, trung tuyến, phân giác của hai tam giác đồng dạng. + Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường trung tuyến tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. + Tỉ số hai đường phân giác tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng. 4. Tỉ số diện tích của hai tam giác đồng dạng. Tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh hai tam giác vuông đồng dạng. Phương pháp giải: Có thể sử dụng một trong các cách sau: + Cách 1: Áp dụng trường hợp đồng dạng của hai tam giác thường vào tam giác vuông. + Cách 2: Sử dụng đặc biệt nhận biết hai tam giác vuông đồng dạng. Dạng 2 . Sử dụng trường hợp đồng dạng của tam giác vuông để giải toán. Phương pháp giải: Sử dụng các trường hợp đồng dạng của hai tam giác vuông (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ, từ đo suy ra điều cần chứng minh. Dạng 3 . Tỉ số diện tích của hai tam giác. Phương pháp giải: Sử dụng định lý tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.