Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2022 - 2023 cụm các trường THPT - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic chọn học sinh giỏi môn Toán 10 cấp cụm năm học 2022 – 2023 cụm các trường THPT trực thuộc sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi Olympic Toán 10 năm 2022 – 2023 cụm các trường THPT – Hà Nội : + Cho Parabol (P): y = x2 – 2x – 1. 1) Lập bảng biến thiên và vẽ đồ thị (P). 2) Tìm giá trị thực của m để đường thẳng d: y = mx + 1 cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thoả mãn |x1 – x2| nhỏ nhất? + Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Cửa hàng cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi trang trại phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất? + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, BD = 26 và điểm A(2;-1). Biết điểm C có hoành độ dương và nằm trên đường thẳng d: x – y + 1 = 0. 1) Viết phương trình đường thẳng AC. 2) Tìm tọa độ điểm B biết B có hoành độ lớn hơn 4.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường THPT Minh Châu - Hưng Yên
Đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Minh Châu – Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường THPT Minh Châu – Hưng Yên : + Cho phương trình bậc hai x2 – (m – 1)x + 2m2 – 8m + 6 = 0 (1) (với m là tham số). a) Tìm m để phương trình (1) có hai nghiệm. b) Giả sử 1 2 x x là hai nghiệm của phương trình (1). Hãy tìm giá trị lớn nhất và bé nhất của biểu thức A x x x x 1 2 1 2 2. + Cho hàm số: y = x2 – 4(m + 1)x + 2m2 + 2m + 1 (1). Tìm m để đồ thị hàm số (1) cắt đường thẳng y = -2x + 1 tại hai điểm phân biệt A, B sao cho trọng tâm tam giác OAB nằm trên Ox (O là gốc toạ độ). + Trong mặt phẳng Oxy cho A(1;2), B(-2;6), C(9;8). 1) Chứng minh: A, B, C là 3 đỉnh của tam giác và tam giác ABC vuông tại A. 2) Tính chu vi và diện tích tam giác ABC.
Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 10 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với số nguyên dương n 2, xét bảng vuông gồm có 2 1 2 1 n n ô vuông, người ta viết vào mỗi ô chỉ một trong 3 số 1, 0 hoặc 1 sao cho trong mỗi bảng con 2 2 luôn tìm được 3 ô có tổng bằng 0. Gọi n S là giá trị lớn nhất của tổng tất cả các số trong bảng. Chứng minh? + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn O. Tia AO cắt đoạn thẳng BC tại L. Gọi A là điểm đối xứng với A qua đường thẳng BC. Giả sử tiếp tuyến qua A của đường tròn ngoại tiếp tam giác ABC cắt các tia AB AC lần lượt tại các điểm D E. a. Chứng minh đường tròn ngoại tiếp các tam giác A B D, ACE, AAL cùng đi qua một điểm khác A. b. Gọi J là tâm đường tròn ngoại tiếp tam giác ADE. Chứng minh đường tròn ngoại tiếp tam giác JDE tiếp xúc với. + Cho a b c là độ dài các cạnh của một tam giác có chu vi bằng 2. Chứng minh?
Đề Olympic tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề Olympic Toán 10 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 10 năm học 2020 – 2021. Đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Tìm tham số b và c sao cho hàm số có đồ thị là một đường parabol  với đỉnh là I(2;5). + Lập bảng biến thiên của hàm số. Từ đó hãy tìm tham số m sao cho phương trình có nghiệm duy nhất. + Cho tam giác ABC. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc với nhau tại trọng tâm G. Tính theo a diện tích tam giác ABC.