Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một đơn vị công nhân sửa đường dự định phân chia số mét đường phải sửa cho 3 tổ: Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 4 : 5 : 6. Nhưng sau đó, vì số người thay đổi nên đơn vị đã chia lại số mét đường phải sửa cho Tổ 1, Tổ 2, Tổ 3 tương ứng theo tỷ lệ 3 : 4 : 5. Do đó, có một tổ làm ít hơn dự định là 20m đường. Tính số mét đường đơn vị đã chia lại cho mỗi tổ. + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân có đáy là BC. Gọi M, N lần lượt là trung điểm của AB và AC. Kẻ NH vuông góc với CM tại H. Kẻ HE vuông góc với AB tại E. Kẻ AK vuông góc với CM tại K. Kẻ AQ vuông góc với HN tại Q. 1. Chứng minh rằng AK = HC = AQ. Tính số đo góc BKA. 2. Chứng minh tam giác ABH cân và HM là tia phân giác của góc BHE. 3. Gọi I là điểm di động trên tia CA, J là điểm di động trên tia CB. Xác định vị trí các điểm I, J sao cho tam giác HJI có chu vi bé nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.
Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.
Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).