Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán cực trị trong hình học giải tích không gian

Tài liệu gồm 74 trang, hướng dẫn phương pháp giải một số bài toán cực trị trong hình học giải tích không gian Oxyz, đây là dạng toán vận dụng cao thường gặp trong chương trình Hình học 12 chương 3 và các đề thi tốt nghiệp THPT môn Toán. Phần 1 . Một số bài toán cực trị trong hình học giải tích không gian 1. Chủ đề 1. Tìm điểm thỏa điều kiện cực trị 1. + Bài toán 1: Cho điểm A cố định và điểm M di động trên hình (H) (đường thẳng, mặt phẳng). Tìm tọa độ M để độ dài AM nhỏ nhất 1. + Bài toán 2: Cho mặt phẳng (P) và hai điểm A, B phân biệt. Tìm điểm M thuộc (P) để MA + MB nhỏ nhất, |MA − MB| lớn nhất 2. + Bài toán 3: Cho mặt phẳng (P) và mặt cầu (S) cố định ((P) và (S) không có điểm chung). Xét điểm M di động trên (P) và N di động trên (S). Xác định vị trí M và N để độ dài MN nhỏ nhất (lớn nhất) 5. + Bài toán 4: Cho hai đường thẳng d1 và d2 chéo nhau. Tìm M thuộc d1, N thuộc d2 sao cho độ dài MN nhỏ nhất (đoạn vuông góc chung) 7. + Bài toán 5: Tìm điểm M thoả mãn điều kiện cực trị liên quan đến các yếu tố định lượng (diện tích, thể tích, khoảng cách, ..) 9. + Bài toán 6: Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) sao cho độ dài của véc tơ tổng (hiệu) nhỏ nhất 11. + Bài toán 7:Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) để biểu thức T = m.MA2 + n.MB2 + k.MC2 nhỏ nhất (lớn nhất) 13. Chủ đề 2. Lập phương trình mặt phẳng 16. + Bài toán 1: Viết phương trình mặt phẳng chứa M và cách A một khoảng lớn nhất 16. + Bài toán 2: Viết phương trình mặt phẳng chứa đường thẳng d (hoặc hai điểm B, C) và cách điểm A một khoảng lớn nhất 19. + Bài toán 3: Viết phương trình mặt phẳng chứa A và song song với ∆ và cách ∆ một khoảng lớn nhất 22. + Bài toán 4: Viết phương trình mặt phẳng chứa d và tạo với mặt phẳng (Q) một góc nhỏ nhất 24. + Bài toán 5: Viết phương trình mặt phẳng chứa d và tạo với d0 một góc lớn nhất 26. + Bài toán 6: Viết phương trình mặt phẳng đi qua A và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 28. + Bài toán 7: Viết phương trình mặt phẳng chứa d và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 29. Chủ đề 3. Lập phương trình đường thẳng 33. + Bài toán 1: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d lớn nhất 33. + Bài toán 2: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d nhỏ nhất 34. + Bài toán 3: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc lớn nhất 36. + Bài toán 4: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc nhỏ nhất 37. + Bài toán 5: Cho mặt phẳng (P) và mặt cầu (S) cắt nhau theo một đường tròn giao tuyến (C) và điểm A nằm trong hình tròn (C). Viết phương trình đường thẳng d đi qua điểm A và cắt (C) tại hai điểm M, N thỏa mãn độ dài MN ngắn nhất 40. Phần 2 . Đáp án và hướng dẫn giải bài tập tương tự của từng Chủ đề 42. A Đáp án bài tập tương tự của từng Chủ đề 42. B Lời giải chi tiết bài tập tương tự của từng Chủ đề 42.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình học giải tích không gian - Lưu Huy Thưởng
Tài liệu gồm 60 trang với phần lý thuyết, công thức, bài tập có đáp án và tuyển tập các bài hình học tọa độ không gian trong đề thi THPT, Đại học – Cao đẳng. Tài liệu do thầy Lưu Huy Thưởng biên soạn. BÀI 1: MỞ ĐẦU BÀI 2: PHƯƠNG TRÌNH MẶT CẦU BÀI 3: PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1: Viết phương trình mặt phẳng Để lập phương trình mặt phẳng (α) ta cần xác định một điểm thuộc (α) và một VTPT của nó Vấn đề 2: Vị trí tương đối của hai mặt phẳng Vấn đề 3: Khoảng cách từ một điểm đến một mặt phẳng Khoảng cách giữa hai mặt phẳng song song.Hình chiếu của một điểm trên mặt phẳng. Điểm đối xứng của một điểm qua mặt phẳng Vấn đề 4: Góc giữa hai mặt phẳng BÀI 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1: Lập phương trình đường thẳng Để lập phương trình đường thẳng d ta cần xác định một điểm thuộc d và một VTCP của nó Vấn đề 2: Vị trí tương đối giữa hai đường thẳng Để xét VTTĐ giữa hai đường thẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa các VTCP và các điểm thuộc các đường thẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình các đường thẳng Vấn đề 3: Vị trí tương đối giữa đường thẳng và mặt phẳng Để xét VTTĐ giữa đường thẳng và mặt phẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa VTCP của đường thẳng và VTPT của mặt phẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình đường thẳng và mặt phẳng Vấn đề 5: Khoảng cách Vấn đề 6: Góc Vấn đề 7: Một số vấn đề khác [ads] CÁC DẠNG TOÁN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG + Dạng 1: Cơ bản + Dạng 2: Phương trình mặt phẳng liên quan tới mặt cầu + Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách + Dạng 4: Viết phương trình mặt phẳng liên quan đến góc + Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG + Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương + Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác + Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác + Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách + Dạng 5: Viết phương trình đường thẳng liên quan đến góc + Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác III. VIẾT PHƯƠNG TRÌNH MẶT CẦU IV. TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC + Dạng 1: Xác định điểm thuộc mặt phẳng + Dạng 2: Xác định điểm thuộc đường thẳng + Dạng 3: Xác định điểm thuộc mặt cầu + Dạng 4: Xác định điểm trong không gian + Dạng 5: Xác định điểm trong đa giác CÁC BÀI TOÁN LIÊN QUAN ĐẾN MIN – MAX
Chuyên đề HH giải tích không gian - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 51 trang, tóm tắt công thức, phân dạng và giải chi tiết các bài toán chuyên đề HH giải tích không gian. Tài liệu gồm các vấn đề: + Vấn đề 1. Mặt phẳng và đường thẳng + Vấn đề 2. Hình chiếu và đối xứng + Vấn đề 3. Khoảng cách và góc + Vấn đề 4. Vị trí tương đối của đường thằng và mặt phẳng + Vấn đề 5. Mặt cầu [ads]
Chuyên đề trắc nghiệm vị trí tương đối, góc và khoảng cách
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vị trí tương đối, góc và khoảng cách, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. VỊ TRÍ TƯƠNG ĐỐI. 1. Vị trí tương đối của hai mặt phẳng. 2. Vị trí tương đối của đường thẳng và mặt phẳng. 3. Vị trí tương đối của hai đường thẳng. VẤN ĐỀ 2. BÀI TOÁN VỀ GÓC. 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng. 3. Góc giữa đường thẳng và mặt phẳng. VẤN ĐỀ 3. BÀI TOÁN VỀ KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa hai mặt phẳng song song. 3. Khoảng cách từ điểm đến đường thẳng. 4. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.