Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 - Quảng Ngãi

Đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 – Quảng Ngãi có cấu trúc bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo; đề có mã đề 465, gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 lần 1 môn Toán trường Tư Nghĩa 1 – Quảng Ngãi : + Cho hình chóp S.ABC có thể tích bằng 2160 cm3. M là điểm tùy ý nằm bên trong tam giác ABC. Các đường thẳng qua M song song với SA, SB, SC cắt các mặt phẳng  (SBC), (SAC), (SAB ) tương ứng tại A’, B’, C’. Thể tích lớn nhất của khối tứ diện MA’B’C’ bằng? + Có 7 học sinh lớp A, 8 học sinh lớp B, 9 học sinh lớp C. Chọn ngẫu nhiên 8 học sinh lập thành một đội. Xác suất để 8 bạn được chọn có cả 3 lớp là? [ads] + Cho hình chóp S.ABCD có đáy là hình vuông vuông, AB = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, SC hợp với đáy một góc 30 độ. Gọi M là trung điểm của AD. Khoảng cách giữa hai đường thẳng SC và BM bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,035x^2(15 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất. A. x = 8 B. x = 10 C. x= 15 D. x = 7 [ads] + Một tấm kẽm hình vuông ABCD có cạnh bằng 30cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy. Giá trị của x để thể tích khối lăng trụ lớn nhất là? A. x = 5 cm B. x = 9 cm C. x = 8 cm D. x = 10 cm + Cho hàm số y = f(x) có đao hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f'(x), (y = f'(x) liên tục trên R). Xét hàm số g(x) = f(x^2 – 2). Mệnh đề nào dưới đây sai? A. Hàm số g(x) nghịch biến trên (−∞; −2) B. Hàm số g(x) đồng biến trên (2; +∞) C. Hàm số g(x) nghịch biến trên (−1; 0) D. Hàm số g(x) nghịch biến trên (0; 2)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung - Bình Phước lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung – Bình Phước lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi : + Chọn phát biểu đúng. A. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số chẵn B. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số lẻ C. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số chẵn D. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số lẻ + Trên tập số phức, cho phương trình: az^2 + bz + c = 0 (a, b, c ∈ R). Chọn kết luận sai. A. Nếu b = 0 thì phương trình có hai nghiệm mà tổng bằng 0 B. Nếu Δ = b^2 – 4ac < 0 thì phương trình có hai nghiệm mà modun bằng nhau C. Phương trình luôn có hai nghiệm phức là liên hợp của nhau D Phương trình luôn có nghiệm + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng. A. (H) là một hình thang B. (H) là một ngũ giác C. (H) là một hình bình hành D. (H) là một tam giác
Đề thi thử THPT Quốc gia 2018 môn Toán - Đoàn Trí Dũng, Hà Hữu Hải lần 4
Đề thi thử THPT Quốc gia 2018 môn Toán lần 4 do thầy Đoàn Trí Dũng, Hà Hữu Hải biên soạn, đề thi gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết các câu hỏi phân loại . Trích dẫn đề thi : + Cho hình trụ có các đáy là hai hình tròn tâm I và I’, bán kính đáy bằng chiều cao và bằng a. Trên đường tròn đáy tâm I lấy điểm A, trên đường tròn đáy tâm I’ lấy điểm B sao cho AB = 2a. Tính tỷ số thể tích của khối trụ và khối tứ diện II’AB. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất? [ads] A. 10 B. 12 C. 16 D. 24 + Một chiếc thùng đựng nước hình trụ có bán kính đáy 20cm, bên trong đựng một lượng nước. Biết rằng khi nghiêng thùng sao cho đường sinh của hình trụ tạo với mặt đáy góc 45 độ cho đến khi nước lặng, thì mặt nước chạm vào hai điểm A và B nằm trên hai mặt đáy như hình vẽ bên. Hỏi thùng đựng nước có thể tích là bao nhiêu cm3?A. 16000π B. 12000π C. 8000π D. 6000π
Đề thi thử THPT Quốc gia 2018 môn Toán Nguyễn Phú Khánh lần 2
Đề thi thử THPT Quốc gia 2018 môn Toán – Nguyễn Phú Khánh lần 2 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Khi nói về hàm số y = (x^2 + (m + 1)x + m + 1)/(x + 1), m là tham số, phát biểu nào sau đây là sai? A. Đồ thị hàm số luôn có điểm cực đại, cực tiểu và khoảng cách giới hạn điểm đó bằng 2√5 B. Gọi y1 và y2 là các giá trị cực đại và cực tiểu của hàm số, khi đó số trị biểu thức y2 – y1 không phụ thuộc tham số m C. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cách đều gốc tọa độ O D. Tồn tại duy nhất giá trị thực của m để điểm cực đại, cực tiểu của đồ thị cùng với gốc tọa độ tạo thành tam giác vuông tại O + Có bao nhiêu phát biểu đúng về hàm số f(x) = x^4 – 2x^2 + 3 trên đoạn [-1; 1]? [ads] I. Hàm số y = f(x) + 2017 đồng biến trên khoảng (-1; 0) II. Hàm số y = 2017.f(x) đồng biến trên khoảng (-1; 0) III. Hàm số y = -2017.f(x) nghịch biến trên khoảng (-1; 0) IV. Hàm số y = f(x) nghịch biến trên khoảng (a; b) thì số trị của b^7 – a^3 nằm trong khoảng (0; 2) V. Hàm số y = f(x) đồng biến trên khoảng (c; d) thì c^2017 + d^2016 < 0 + Trong không gian với hệ tọa độ Oxyz, cho điểm M(3; -1; 2). Trong các phát biểu sau, phát biểu nào sai? A. Tọa độ hình chiếu của M trên mặt phẳng (xOy) là M'(3; -1; 0) B. Tọa độ hình chiếu của M trên trục Oz là M'(0;0;2) C. Tọa độ đối xứng của M qua gốc tọa độ O là M'(-3; 1; -2) D. Khoảng cách từ M đến gốc tọa độ O bằng 14^1/3