Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ - Bình Phước

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 lần 1 năm học 2023 – 2024 trường THCS Đắk Ơ, huyện Bù Gia Mập, tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 10 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi HSG Toán 9 lần 1 năm 2023 – 2024 trường THCS Đắk Ơ – Bình Phước : + Cho AB là đường kính của đường tròn (O; R). C là một điểm thay đổi trên đường tròn (C khác A và B), kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC; OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M; MB cắt CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn. b) Chứng minh MC là tiếp tuyến của (O; R). c) Chứng minh K là trung điểm của CH. + Cho tam giác đều ABC. Trên các cạnh BC, CA, AB lần lượt lấy ba điểm bất kỳ I, J, K sao cho K khác A, B và 0 IKJ 60. Chứng minh rằng: 2 4 AB AJ BI. Dấu “=” xảy ra khi nào? + Cho các số thực dương x, y thỏa mãn 2 2 7x 13xy 2y 0. Tính giá trị của biểu thức 2x 6y B 7x 4y.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Bến Tre; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày … tháng 12 năm 2022. Trích dẫn Đề thi chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Bến Tre : + Cho biểu thức: A. a) Chứng minh rằng: A > 4. b) Tìm các giá trị của a để biểu thức 6/A nhận giá trị nguyên. + Tìm tất cả các số tự nhiên n để B = n(n + 1)(n + 2)/6 + 1 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh: BH.BD = BC.BK và BH.BD + CH.CE = BC2. b) Chứng minh: BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A vuông góc với AM cắt các đường thẳng BD, CE lần lượt tại Q và P. Chứng minh rằng: MP = MQ.
Đề thi chọn HSG tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi chọn HSG tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y > 1. + Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP. + Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n > 1). Chứng minh rằng: P không phải là số chính phương.
Đề thi HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận (theo điểm số), thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 20 tháng 10 năm 2022. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một cây cau có chiều cao 7m. Để hái một buồn cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Cho tam giác ABC vuông tại A AB AC kẻ đường cao AH của ABC. Gọi D và E là hình chiếu của H trên AB và AC. 1) Cho AB cm 6 và HC cm 6 4. Tính BC và AC. 2) Chứng minh: 3 DE BC BD CE. 3) Đường thẳng qua B vuông góc với BC cắt HD tại M; Đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh M A N thẳng hàng. + Cho đường tròn O 2 AB là một dây của đường tròn có độ dài là 2. Khoảng cách từ tâm O đến AB có giá trị là?
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thị xã năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thái Hòa, tỉnh Nghệ An. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thái Hòa – Nghệ An : + Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu A. + Cho tam giác ABC nhọn, có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M, N lần lượt là hình chiếu của điểm D trên các đường thẳng BE, CF, AB, AC a) Chứng minh: HI.HB = HK.HC b) Chứng minh: IK // EF và bốn điểm I, K, M, N thẳng hàng. c) Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.