Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình nghiệm nguyên chọn lọc

Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.

Nguồn: toanmath.com

Đọc Sách

Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.
Bài toán chứng minh các đường thẳng đồng quy
Nội dung Bài toán chứng minh các đường thẳng đồng quy Bản PDF - Nội dung bài viết Bài toán chứng minh các đường thẳng đồng quy trong toán học Bài toán chứng minh các đường thẳng đồng quy trong toán học Trong tài liệu này bao gồm 16 trang với hướng dẫn cụ thể về phương pháp giải bài toán chứng minh các đường thẳng đồng quy. Đây là dạng bài toán thường gặp trong các bài toán hình học. Bài toán này thường đưa ra các điều kiện của các đường thẳng và yêu cầu chúng ta chứng minh rằng các đường thẳng đó đồng quy. Qua việc áp dụng các quy tắc và định lý liên quan, chúng ta có thể dễ dàng chứng minh được tính đồng quy của các đường thẳng đó. Với tài liệu này, bạn sẽ học được cách tiếp cận bài toán chứng minh các đường thẳng đồng quy một cách logic và cụ thể, từ đó giúp bạn nắm vững kiến thức và kỹ năng cần thiết trong việc giải các dạng bài toán này.
Các bài toán chứng minh ba điểm thẳng hàng
Nội dung Các bài toán chứng minh ba điểm thẳng hàng Bản PDF - Nội dung bài viết Cách giải bài toán chứng minh ba điểm thẳng hàng Cách giải bài toán chứng minh ba điểm thẳng hàng Tài liệu này bao gồm 21 trang và hướng dẫn cách giải bài toán chứng minh ba điểm thẳng hàng. Đây là một dạng toán mà các bạn thường gặp trong quá trình học tập. Để giải bài toán này, đầu tiên ta cần phải biết rằng ba điểm thẳng hàng chỉ xảy ra khi ba điểm đó cùng nằm trên một đường thẳng. Để chứng minh điều này, chúng ta cần sử dụng các phương pháp và công thức hình học cơ bản như định lý hình chiếu, định lý góc bù, hay định lý hình vuông. Quá trình chứng minh ba điểm thẳng hàng có thể phức tạp đôi khi, nhưng với kiến thức và kỹ năng phù hợp, chắc chắn bạn có thể giải quyết thành công. Hãy làm quen với các phương pháp chứng minh và luyện tập thường xuyên để nâng cao khả năng giải quyết bài toán hình học của bạn.
Các bài toán chứng minh đẳng thức hình học
Nội dung Các bài toán chứng minh đẳng thức hình học Bản PDF - Nội dung bài viết Các bài toán chứng minh đẳng thức hình học: "Với bài toán hình học trong" Các bài toán chứng minh đẳng thức hình học: "Với bài toán hình học trong" Trên thực tế, các bài toán chứng minh đẳng thức hình học đóng vai trò quan trọng trong việc giải quyết các vấn đề liên quan đến hình học. Các bài toán này thường yêu cầu sử dụng kiến thức và kỹ năng về các định lý hình học để chứng minh tính đúng đắn của một đẳng thức nào đó. Đối với bài toán hình học trong, việc phân tích và giải quyết chúng đòi hỏi sự tập trung, logic, và khả năng suy luận tốt. Thông qua việc chứng minh đẳng thức hình học, chúng ta có thể hiểu rõ hơn về cấu trúc và tính chất của các hình học, từ đó giúp chúng ta áp dụng kiến thức này vào các vấn đề thực tế khác. Với sự phức tạp và đa dạng của các bài toán hình học trong, việc rèn luyện và nâng cao kỹ năng giải quyết chúng sẽ giúp chúng ta trở thành những người giỏi về hình học, cũng như phát triển khả năng tư duy logic và sáng tạo trong quá trình giải quyết vấn đề.