Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ

Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2022 2023 phòng GD ĐT Đoan Hùng Phú Thọ Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Đề HSG Toán lớp 9 cấp huyện năm 2022 - 2023 phòng GD&ĐT Đoan Hùng - Phú Thọ Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp huyện năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ tổ chức. Đề thi được thiết kế với hình thức 40% trắc nghiệm và 60% tự luận, thời gian làm bài là 150 phút (không tính thời gian giao đề). Đề thi có đáp án và lời giải chi tiết để các em có thể tự kiểm tra và ôn tập sau khi thi xong. Trích dẫn một số câu hỏi trong đề thi: Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. Hãy chứng minh rằng bốn điểm OMHI cùng thuộc một đường tròn. Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? Cho \(P(x)\) là một đa thức bậc \(n\) với hệ số nguyên, \(n \geq 2\). Biết \(P(1) = 2022\). Chứng minh rằng phương trình \(P(x) = 0\) không có nghiệm nguyên. Nếu quý thầy cô và các em quan tâm đến đề thi, vui lòng tải file WORD dưới đây để xem chi tiết và chuẩn bị cho kỳ thi sắp tới. Mong rằng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng Toán của mình. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.