Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn 259 bài toán tọa độ trong không gian

Tài liệu gồm 130 trang tuyển chọn 259 bài toán tọa độ trong không gian giúp học sinh học tốt chủ đề phương pháp tọa độ trong không gian Oxyz thuộc phần Hình học 12 chương 3 và ôn tập hướng đến kỳ thi THPT Quốc gia 2019 môn Toán. Các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều được biên soạn ở dạng trắc nghiệm khách quan với 04 lựa chọn và được phân loại theo từng đơn vị bài học: phương pháp tọa độ trong không gian, mặt cầu, phương trình mặt phẳng, phương trình đường thẳng. Tất cả các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu tuyển chọn 259 bài toán tọa độ trong không gian : + Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;1;0), C(0;0;1), D(1;1;1). Trong các mệnh đề sau, mệnh đề nào sai? A. Bốn điểm A, B, C, D không đồng phẳng. B. Tam giác ABD là tam giác đều. C. AB vuông góc với CD. D. Tam giác BCD là tam giác vuông. + Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD biết A(0;1;-1), B(1;1;2), C(1;-1;0), D(0;0;1). Viết phương trình mặt phẳng (a) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AEFG và EFGBCD biết tỷ số thể tích của AEFG và tứ diện bằng 1/27. + Trong không gian với hệ toạ độ Oxyz, cho 3 điểm A(1;3;2), B(1;2;1), C(1;1;3). Viết phương trình đường thẳng Δ đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Một học sinh làm như sau: Bước 1: Toạ độ trọng tâm G của tam giác ABC là: G (1;2;2). Bước 2: Vectơ pháp tuyến của mặt phẳng (ABC) là: n = [AB,AC] = (-3;1;0). Bước 3: Phương trình tham số của đường thẳng Δ: x = 1 – 3t, y = 2 + t, z = 2. Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào? A. Đúng. B. Sai ở bước 1. C. Sai ở bước 2. D. Sai ở bước 3.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề HH giải tích không gian - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 51 trang, tóm tắt công thức, phân dạng và giải chi tiết các bài toán chuyên đề HH giải tích không gian. Tài liệu gồm các vấn đề: + Vấn đề 1. Mặt phẳng và đường thẳng + Vấn đề 2. Hình chiếu và đối xứng + Vấn đề 3. Khoảng cách và góc + Vấn đề 4. Vị trí tương đối của đường thằng và mặt phẳng + Vấn đề 5. Mặt cầu [ads]
Chuyên đề trắc nghiệm vị trí tương đối, góc và khoảng cách
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vị trí tương đối, góc và khoảng cách, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. VỊ TRÍ TƯƠNG ĐỐI. 1. Vị trí tương đối của hai mặt phẳng. 2. Vị trí tương đối của đường thẳng và mặt phẳng. 3. Vị trí tương đối của hai đường thẳng. VẤN ĐỀ 2. BÀI TOÁN VỀ GÓC. 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng. 3. Góc giữa đường thẳng và mặt phẳng. VẤN ĐỀ 3. BÀI TOÁN VỀ KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa hai mặt phẳng song song. 3. Khoảng cách từ điểm đến đường thẳng. 4. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích có hướng của hai vectơ và ứng dụng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích có hướng của hai vectơ và ứng dụng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. 1. Công thức định thức. 2. Định nghĩa tích có hướng của hai vectơ. 3. Tính chất. 4. Ứng dụng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tọa độ của điểm và véctơ
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tọa độ của điểm và véctơ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. Hệ trục tọa độ trong không gian. II. Tọa độ vectơ. III. Tọa độ của điểm. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.