Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình nghiệm nguyên liên quan đến mũ - logarit - Trần Trọng Trị

Tài liệu gồm 27 trang được biên soạn bởi tác giả Trần Trọng Trị (giáo viên Toán tiếp sức chinh phục kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020 trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn phương pháp giải bài toán phương trình nghiệm nguyên liên quan đến mũ – logarit, một lớp bài toán vận dụng cao (VDC) thường xuất hiện trong đề thi thử THPT Quốc gia môn Toán. 1. Dạng 1: Có đúng một biến nguyên và rút được biến nguyên này theo biến còn lại. Đến đây, ta xét hàm để tìm miền giá trị cho biến nguyên đó. 2. Dạng 2: Khi phương trình rút gọn là phương trình bậc hai theo biến không nguyên. Ta sử dụngđiều kiện có nghiệm của phương trình bậc hai để tìm miền giá trị cho biến nguyên. 3. Dạng 3: Cả hai biến đều nguyên, trong đó có một biến nguyên thuộc tập K cho trước, với K có thể là một khoảng, một đoạn. Khi đó, ta cũng rút biến nguyên thuộc K theo biến còn lại để tìm miền giá trị cho biến đó. [ads] 4. Dạng 4: Cả hai biến đều nguyên, rút được biến này theo biến kia đưa về bài toán tìm điểm nguyên trên các đường cong đơn giản. 5. Dạng 5: Đưa phương trình về tổng các bình phương của hai biến nguyên. 6. Dạng 6: Đưa về phương trình tích của hai biến nguyên. 7. Dạng 7: Sử dụng tính chất chia hết. 8. Dạng 8: Đếm điểm nguyên trong các hình cơ bản.

Nguồn: toanmath.com

Đọc Sách

Phân loại dạng và phương pháp giải nhanh chuyên đề mũ và logarit - Nguyễn Vũ Minh
Tài liệu phân dạng và hướng dẫn cách giải các bài toán trắc nghiệm trong chuyên đề phương trình mũ và logarit. Nội dung tài liệu gồm các phần: + Phần I: Lũy thừa – Hàm số lũy thừa A. Lũy thừa B. Hàm số lũy thừa C. So sánh mũ – lũy thừa [ads] + Phần II: Logarit A. Công thức logarit B. Hàm số logarit C. So sánh logarit D. Đạo hàm mũ – logarit
Bài toán lãi suất và ví dụ minh họa - Trần Thông
Trong thời điểm kỳ thi THPT quốc gia đang cận kề, tôi mạnh dạn tổng hợp một số bài toán liên quan đến lãi suất ngân hàng để các bạn học sinh có thêm tài liệu ôn tập trong kỳ thi sắp tới. Mặc dù không xuất hiện trong đề thi tham khảo của bộ giáo dục và đào tạo nhưng khả năng dạng toán này xuất hiện trong đề thi chính thức không phải là không có; đối với những bài toán gắn liền với thực tế, các bạn học sinh gặp rất nhiều khó khăn trong việc tiếp cận và sử lý, hi vọng thông qua bài viết này tôi có thể giúp các bạn giải quyết được phần nào vấn đề đó. Bài viết được chia làm ba phần: [ads] + Phần 1: Giới thiệu một số bài toán liên quan đến lãi suất ngân hàng. + Phần 2: Phân tích một số kỹ năng sử lý bài toán. + Phần 3: Trình bày một số bài tập trích từ đề thi thử của một số trường THPT trên toàn quốc.
Kỹ năng sử dụng Casio giải nhanh trắc nghiệm hàm số và mũ - logarit - Lê Anh Tuấn
Tài liệu gồm 72 trang với 15 bài: + Bài 1. Tìm giá trị lớn nhất – giá trị nhỏ nhất + Bài 2. Tìm nhanh khoảng đồng biến – nghịch biến + Bài 3. Cực trị hàm số + Bài 4. Tiếp tuyến của hàm số + Bài 5. Giới hạn của hàm số + Bài 6. Tiệm cận của đồ thị hàm số + Bài 7. Bài toán tương giao giữa hai đồ thị [ads] + Bài 8. Đạo hàm + Bài 9. Tìm số nghiệm phương trình mũ – logarit (phần 1) + Bài 10. Tìm số nghiêm phương trình mũ – logarit (phần 2) + Bài 11. Tìm số nghiệm phương trình mũ – logarit (phần 3) + Bài 12. Giải nhanh bất phương trình mũ – logarit (phần 1) + Bài 13. Giải nhanh bất phương trình mũ – logarit (phần 2) + Bài 14. Tìm số chữ số của một lũy thừa + Bài 15. Tính nhanh giá trị biểu thức mũ – logarit
Phương pháp giải bài toán lãi suất ngân hàng - Mẫn Ngọc Quang
Tài liệu gồm 18 trang hướng dẫn phương pháp giải bài toán lãi suất ngân hàng và các bài tập trắc nghiệm có lời giải chi tiết. Công thức 1: (Dành cho gửi tiền một lần) Gửi vào ngân hàng số tiền là a đồng, với lãi suất hàng tháng là r% trong n tháng. Tính cả vốn lẫn lãi T sau n tháng ? Công thức 2: (Dành cho gửi tiền hàng tháng) Một người, hàng tháng gửi vào ngân hàng số tiền là a (đồng). Biết lãi suất hàng tháng là r%. Hỏi sau n tháng, người ấy có bao nhiêu tiền ? Công thức 3: Dành cho bài toán trả góp: Gọi số tiền vay là N, lãi suất là x, n là số tháng phải trả, A là số tiền phải trả vào hàng tháng để sau n tháng là hết nợ. Công thức 4: Rút sổ tiết kiệm theo định kỳ: Thực ra bài toán này giống bài 3, nhưng mình lại hiểu là ngân hàng nợ tiền của người cho vay. Trái lại so với vay trả góp. Công thức 5: Gửi tiền theo kỳ hạn 3 tháng, 6 tháng, 1 năm … [ads]