Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Tĩnh Gia 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Tĩnh Gia 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Tĩnh Gia 1 – Thanh Hóa : + Để xây dựng hầm Thủ Thiêm, các kỹ sư đã đúc các đốt hầm ở Nhơn Trạch (Đồng Nai), cách vị trí cầu 20 km. Khi đốt hầm được đúc xong, người ta tiến hành dùng các tàu kéo để đưa các đốt hầm về lại vị trí hầm Thủ Thiêm (như hình vẽ). Biết rằng 2 tàu lai dắt phía trước có lực kéo như nhau là 3000N và cùng tạo với đường đi của “đốt hầm” một góc là 30°. Tính công của của hai tàu lai dắt một đốt hầm trong quảng đường 500 m. + Từ các chữ số 0; 1; 2; 3; 4; 5. a) Lập được 600 số tự nhiên có 6 chữ số đôi một khác nhau. b) Lập được 216 số tự nhiên có 6 chữ số đôi một khác nhau chia hết cho 5. c) Lập được 156 số chẵn có bốn chữ số đôi một khác nhau d) Lập được 256 số tự nhiên có bốn chữ số đôi một khác nhau luôn có mặt số 0 và 1. + Trong một đề thi trắc nghiệm môn Toán có loại câu hỏi trả lời dạng đúng sai. Một câu hỏi có 4 ý hỏi, mỗi ý hỏi học sinh chỉ cần trả lời đúng hoặc chỉ trả lời sai. Nếu 1 ý trả lời đúng đáp án thì được 0,1 điểm, đúng đáp án 2 ý được 0,25 điểm, đúng đáp án 3 ý được 0,5 điểm và đúng đáp án cả 4 ý được 1 điểm. Giả sử một thí sinh làm bài bằng cách chọn phương án ngẫu nhiên để trả lời cho 2 câu hỏi loại đúng sai này. Hỏi có bao nhiêu cách chọn phương án để học sinh đó được 1 điểm ở phần trả lời 2 câu hỏi này.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 10 năm 2018 - 2019 trường Đan Phượng - Hà Nội
giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội, kỳ thi được diễn ra nhằm giúp giáo viên bộ môn và nhà trường tuyển chọn những em học sinh khối lớp 10 giỏi môn Toán để bổ sung vào đội tuyển học sinh giỏi Toán 10 của nhà trường, những em được chọn sẽ được tuyên dương, khen thưởng trước toàn trường để làm tấm gương học tập cho các học sinh khác, các em sẽ được tiếp tục bồi dưỡng, rèn luyện để tham gia kỳ thi học sinh giỏi Toán cấp thành phố. Đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội được biên soạn theo hình thức tự luận nhằm đánh giá chính xác khả năng tư duy logic của các em, đề gồm 5 bài toán, thang điểm 20, thời gian làm bài thi môn Toán là 120 phút, đề thi có lời giải chi tiết và thang điểm. [ads] Trích dẫn đề thi học sinh giỏi Toán 10 năm 2018 – 2019 trường Đan Phượng – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình thang ABCD với hai đáy là AB và CD. Biết diện tích hình thang bằng 14 (đơn vị diện tích), đỉnh A(1;1) và trung điểm cạnh BC là H(-1/2;0). Viết phương trình tổng quát của đường thẳng AB biết đỉnh D có hoành độ dương và D nằm trên đường thẳng d: 5x – y + 1 = 0. + Cho parabol (P): y = 2x^2 + 6x – 1. Tìm giá trị của k để đường thẳng Δ: y = (k + 6)x + 1 cắt parabol (P) tại hai điểm phân biệt M, N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: y = -2x + 3/2. + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng a. Trên các cạnh BC, CA, AB lần lượt lấy các điểm N, M, P sao cho BN = a/3, CM = 2a/3, AP = x (0 < x < a). Tìm giá trị của x theo a để đường thẳng AN vuông góc với đường thẳng PM.
Đề thi HSG Toán 10 năm 2018 - 2019 trường Phùng Khắc Khoan - Hà Nội
Nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán để bổ sung vào đội ngũ học sinh giỏi Toán 10 của trường, vừa qua, trường THPT Phùng Khắc Khoan, Thạch Thất, Hà Nội đã tiến hành tổ chức kỳ thi chọn học sinh giỏi cấp trường lớp 10 môn Toán năm học 2018 – 2019. Đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội gồm 1 trang, đề được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài thi là 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG Toán 10 năm 2018 – 2019 trường Phùng Khắc Khoan – Hà Nội : + Cho hàm số y = x^2 + x – 1 có đồ thị (P). Tìm m để đường thẳng d: y = -2x – m cắt đồ thị (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Cho tam giác ABC có AB = c, AC = b và góc BAC bằng 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NA = -1/2.NB. Tìm hệ thức liên hệ giữa b và c để AM và CN vuông góc với nhau. + Cho tam giác ABC có BC = a, CA = b, BA = c và diện tích là S. Biết S = b^2 – (a – c)^2. Tính tanB.
Đề thi HSG Toán 10 cấp trường năm 2018 - 2019 trường Yên Phong 2 - Bắc Ninh
Vào ngày 26 tháng 01 năm 2019, trường THPT Yên Phong số 2, tỉnh Bắc Ninh đã tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 10 cấp trường năm học 2018 – 2019, kỳ thi nhằm tuyển chọn các em học sinh giỏi môn Toán 10 để khen thưởng, làm tấm gương sáng cho các học sinh trong trường, đồng thời tiếp tục bồi dưỡng để các em tham dự được kỳ thi học sinh Toán 10 cấp tỉnh. Đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Yên Phong 2 – Bắc Ninh gồm 01 trang, đề được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 150 phút, lời giải chi tiết và thang điểm được đính kèm ở bên dưới đề thi để các em thuận tiện tra cứu. [ads] Trích dẫn đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Yên Phong 2 – Bắc Ninh : + Cho hàm số y = x^2 – (2m – 3)x – 2m + 2 (1). 1) Xét sự biến thiên và vẽ đồ thị hàm số (1) khi m = 0. 2) Xác định m để đồ thị hàm số (1) cắt đường thẳng y = 3x – 1 tại hai điểm A, B phân biệt sao cho tam giác OAB vuông tại O (với O là gốc toạ độ). + Cho tam giác ABC có AB = 1, AC = x và góc BAC = 60 độ. Các điểm M, N được xác định bởi MC = -2MB và NB = -2NA. Tìm x để AM và CN vuông góc với nhau. + Cho tam giác ABC. Chứng minh rằng với G là trọng tâm tam giác ABC ta có: GA.GB + GB.GC + GC.GA = -1/6.(AB^2 + BC^2 + CA^2).