Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc

Nội dung Đề thi HSG lớp 12 môn Toán lần 2 năm 2019 2020 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT Đồng Đậu, tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 cấp trường lần thứ 2 năm học 2019 – 2020, nhằm tiếp tục tuyển chọn các em học sinh giỏi Toán lớp 12 vào đội tuyển của trường, đồng thời giúp đội tuyển nhà trường rèn luyện, hướng đến kỳ thi học sinh giỏi Toán THPT cấp tỉnh. Đề thi HSG Toán lớp 12 lần 2 năm học 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc được biên soạn theo hình thức tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 180 phút, nội dung đề bao quát chương trình Toán lớp 10, Toán lớp 11 và Toán lớp 12, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán lớp 12 lần 2 năm 2019 – 2020 trường THPT Đồng Đậu – Vĩnh Phúc : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT Đồng Đậu tổ chức vào tháng 11 năm 2019 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. + Cho hình hộp đứng ABCD.A1B1C1D1 có các cạnh AB = AD = 2, AA1 = √3 và góc BAD = 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh A1D1 và A1B1. Chứng minh rằng AC1 vuông góc với mặt phẳng (BDMN). + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. + Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết B có hoành độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 2022 sở GD ĐT Đồng Tháp Bản PDF Sáng Chủ Nhật ngày 20 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm học 2021 – 2022. Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Cho các số thực x, y, z thỏa mãn: x + y + z = -1 và x3 + y3 + z3 = 11. a) Biểu diễn xz theo y. b) Chứng minh rằng trong ba số x, y, z có ít nhất một số thuộc nửa khoảng [-2;-1). + Cho dãy số (an) xác định như sau. Chứng minh rằng với mỗi số tự nhiên n: a) 2an – 1 là số chính phương. b) an viết được dưới dạng tổng bình phương của hai số tự nhiên. + Có 2021 viên bi, đựng trong 100 cái hộp. Mỗi lần, cho phép lấy 2 viên bi, 2 viên bi đó thuộc vào tối đa 2 hộp và bỏ chúng vào 1 hộp khác. Chứng minh rằng sau một số bước có thể bỏ tất cả các viên bi vào cùng 1 hộp.
Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2020 2021 sở GD ĐT Đắk Lắk
Nội dung Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2020 2021 sở GD ĐT Đắk Lắk Bản PDF Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 17 tháng 03 năm 2021. Trích dẫn đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2020 – 2021 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x^4 + mx^2 + 4 có đồ thị (C) với m là tham số. 1) Khi m = -5, viết phương trình các tiếp tuyến của đồ thị (C) tại giao điểm của nó với trục hoành. 2) Tìm tất cả các giá trị thực của m để đồ thị (C) có 3 điểm cực trị nằm trên các trục toạ độ. + Tìm tất cả các giá trị thực của tham số m để phương trình 4^x – m.2^(x + 1) + 2m = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện x1 + x2 = 4. + Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(1;2;1), B(-2;1;3), C(2;-1;3), D(0;3;1). Viết phương trình mặt phẳng (P) đi qua hai điểm A, B và cách đều hai điểm C, D sao cho C và D nằm khác phía so với mặt phẳng (P).
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT An Giang
Nội dung Đề học sinh giỏi Toán THPT cấp tỉnh năm 2020 2021 sở GD ĐT An Giang Bản PDF Thứ Bảy ngày 10 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT An Giang : + Một mẫu vé vào cửa có số sê ri gồm 5 chữ số từ 00000 đến 99999. Khi vào cửa khách hàng được khuyến mãi một thức uống miễn phí nếu vé đó có hai chữ số liền kề trong 5 chữ số có hiệu bằng 5 (ví dụ 01384). Hỏi có bao nhiêu vé có số sê ri mang đặc điểm này. + Cho hình lăng trụ đứng có đáy là tam giác đều ABC.A’B’C’ cạnh đáy bằng a. Lấy điểm B1 thuộc BB’ điểm C1 thuộc CC’. Đặt BB1 = x; CC1 = y. a. Chứng minh rằng tam giác AB1C1 vuông tại B1 khi 2xy = 2×2 + a2. b. Giả sử tam giác AB1C1 là tam giác thường và B1 là trung điểm của BB’ và alpha là góc giữa hai mặt phẳng (ABC) và (AB1C1), cho y = 2x. Tính diện tích tam giác AB1C1 và độ dài cạnh bên của lăng trụ đã cho theo a và alpha. + Có 2025 đồng xu hai mặt (mặt sấp và mặt ngửa) được đánh số thứ tự từ 1 đến 2025, tất cả đều để ngửa. Thực hiện các thao tác sau: Lần 1: Lật mặt tất cả các đồng xu có số thứ tự là bội của 1. Lần 2: Lật mặt tất cả các đồng xu có số thứ tự là bội của 2. Lần 3: Lật mặt tất cả các đồng xu có số thứ tự là bội của 3. Lần 2025: Lật mặt tất cả các đồng xu có số thứ tự là bội của 2025. Hỏi có bao nhiêu đồng xu ngửa sau lần lật thứ 2021?
Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 2021 sở GD ĐT Cần Thơ
Nội dung Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 2021 sở GD ĐT Cần Thơ Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi THPT cấp thành phố môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ được biên soạn theo hình thức đề thi tự luận 100%, đề gồm 01 trang với 07 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ : + Tại một buổi liên hoan tri ân khách hàng của một công ty, Ban tổ chức phát hành 900 tấm vé trúng thưởng, mỗi tấm vé được ghi một số nguyên, liên tiếp từ 100 đến 999. Khách đến tham dự, chọn ngẫu nhiên các tấm vé này. Nếu chọn được tấm vé có ghi số lẻ và chia hết cho 9 thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1500 đồng. Nếu chọn được tấm vé có ghi các số còn lại thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1000 đồng. Hỏi tổng số tiền Ban tổ chức dùng để trao thưởng cho khách hàng là bao nhiêu? + Cô An dự định xây một cái bể có thể tích bằng 18 m3 dùng để dự trữ nước mưa. Biết bể này không có nắp và có dạng một khối lăng trụ lục giác đều. Hỏi cô An phải thiết kế cạnh đáy của bể trên dài bao nhiêu mét để tổng diện tích phần phải xây là nhỏ nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC (không có góc tù) nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong góc A. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C, biết B(5;0), I(-1/2;1), E(-1;0) và A có tung độ âm.