Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Quảng Trị

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Tìm tất cả các giá trị của tham số m để đường thẳng y = (m2 + 10)x – 25 cắt đồ thị hàm số y = x2 tại hai điểm phân biệt mà hoành độ của chúng đều là các số nguyên. + Cho hai đường tròn (O) và (O’) cắt nhau tại A, B. Tiếp tuyến chung gần B hơn A tiếp xúc với (O) và (O’) lần lượt tại M và N. Gọi P là giao điểm của AB và MN. a) Chứng minh rằng PM2 = PB.PA, từ đó suy ra P là trung điểm của đoạn thẳng MN. b) Gọi D là hình chiếu của N lên đường thẳng MB. Chứng minh rằng AB là phân giác của MAD. c) Gọi C là giao điểm của OO’ và DN. Chứng minh rằng CBN = 90°. + Tại điểm tiêm chủng số 1 của Trung tâm y tế thành phố Đông Hà, người ta bố trí một phòng chờ cho những người đến tiêm. Để đảm bảo an toàn về phòng chống dịch Covid-19, yêu cầu khoảng cách tối thiểu giữa hai người bất kỳ trong phòng là 2m. Hỏi tại một thời điểm, phòng chờ đó chứa được tối đa bao nhiêu người? Biết rằng nền của phòng chờ là một hình vuông có diện tích 16m².

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.
Đề chọn học sinh giỏi Toán THCS năm 2020 - 2021 phòng GDĐT thành phố Vĩnh Long
Đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 06 tháng 12 năm 2020. Trích dẫn đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long : + Chứng minh rằng với mọi số nguyên n thì n^2 + n + 2 không chia hết cho 3. + Tìm các số nguyên x; y thỏa mãn y^2 + 2xy – 3x – 2 = 0. + Cho hình thang ABCD (AB // CD) có D = 60°, C = 30°, AB = 2cm, CD = 6cm. Tính diện tích hình thang ABCD. + Cho điểm M thuộc đường tròn (O) và đường kính AB (M khác A, M khác B và MA = MB). Tia phân giác của góc AMB cắt AC tại C. Qua C vẽ đường thẳng vuông góc với AB cắt các đường thẳng AM và BM lần lượt tại D và H. a) Chứng minh hai đường thẳng AH và BD cắt nhau tại điểm N nằm trên đường tròn (O). b) Gọi E là hình chiếu của H trên tiếp tuyến tại A của đường tròn (O). Chứng minh tứ giác ACHE là hình vuông. c) Gọi F là hình chiếu của D trên tiếp tuyến tại B của đường tròn (O). Chứng minh bốn điểm E, M, N, F thẳng hàng.
Đề chọn HSG Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Thường Tín - Hà Nội
Đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội gồm 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội : + Cho một điểm C di động trên đường tròn tâm O, đường kính AB = 2R. I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI); lấy điểm F thuộc AB sao cho AC = AF. Tính CMF. 2. P thuộc tia đối của tia AC sao cho AP = AC; Q là trung điểm của HB. Chứng minh rằng PH vuông góc với CQ. 3. K tâm đường tròn nội tiếp tam giác AHC; CK cắt AB tại E. Tìm vị trí của C trên cung AB để diện tích tam giác CEF đạt giá trị lớn nhất. 4. Chứng minh rằng MH, BI, CF đồng quy. + Cho số nguyên tố p và hai số nguyên dương x, y thỏa mãn 4×2 −3xy − y2 − p (3x + 2y) = 2p2. Chứng minh rằng 5x − 1 là số chính phương. + Cho x, y, z là các số nguyên thỏa mãn (x − y) (y − z) (z − x) = x + y + z. Chứng minh rằng x + y + z chia hết cho 27.