Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Cho n là số nguyên dương thỏa mãn 3^n – 1 chia hết cho 2^2024. Chứng minh rằng n ≥ 2^2022. + Cho tam giác đều ABC có độ dài cạnh bằng 23 và đường cao AH. Trên đoạn BH lấy điểm M tùy ý (M không trùng B và H). Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. 1. Chứng minh giá trị của biểu thức MP + MQ không phụ thuộc vào vị trí của điểm M. 2. Gọi K là trung điểm của AM. a. Chứng minh rằng tứ giác PKQH là hình thoi. b. Gọi S là diện tích của hình thoi PKQH. Biết khi điểm M thay đổi thì S nhận đúng một giá trị nguyên dương. Tìm giá trị nguyên dương đó. 3. Vẽ đường tròn (O) nội tiếp tam giác ABM. Gọi D, E, F theo thứ tự là tiếp điểm của (O) với các cạnh BM, AB, AM. Vẽ DN vuông góc với EF tại N. Chứng minh BNE = MNF.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Chi Lăng - Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng GD&ĐT Chi Lăng, tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 15 tháng 01 năm 2022.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Oai – Hà Nội.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.