Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 9 - Nguyễn Chín Em (Tập 2)

Tài liệu gồm 285 trang được biên soạn bởi thầy Nguyễn Chín Em, tuyển tập lý thuyết, dạng toán, phương pháp giải và bài tập các chủ đề Toán 9 giai đoạn học kỳ 2. Khái quát nội dung tài liệu tự học Toán 9 – Nguyễn Chín Em (Tập 2): PHẦN I . ĐẠI SỐ. CHƯƠNG 3 . HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. 1 Phương trình bậc nhất hai ẩn số. 2 Hệ hai phương trình bậc nhất hai ẩn. 3 Giải hệ phương trình bằng phương pháp thế. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 4 Giải hệ phương trình bằng phương pháp cộng. + Dạng 1. Giải hệ phương trình. + Dạng 2. Sử dụng hệ phương trình giải toán. 5 Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán vòi nước. 6 Phương trình quy về phương trình bậc hai. + Dạng 1. Giải phương trình tích. + Dạng 2. Sử dụng ẩn phụ chuyển phương trình về phương trình bậc hai. + Dạng 3. Giải phương trình chứa ẩn ở mẫu. + Dạng 4. Giải phương trình bậc ba. + Dạng 5. Giải phương trình trùng phương. + Dạng 6. Giải phương trình hồi quy và phản hồi quy. + Dạng 7. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. + Dạng 8. Phương trình dạng (x + a)^4 + (x + b)^4 = c. + Dạng 9. Sử dụng phương trình bậc hai giải phương trình chứa dấu giá trị tuyệt đối. + Dạng 10. Sử dụng phương trình bậc hai giải phương trình chứa căn thức. 7 Giải bài toán bằng cách lập phương trình. + Dạng 1. Bài toán chuyển động. + Dạng 2. Bài toán về số và chữ số. + Dạng 3. Bài toán vòi nước. + Dạng 4. Bài toán có nội dung hình học. + Dạng 5. Bài toán về phần trăm – năng suất. PHẦN II . HÌNH HỌC. CHƯƠNG 3 . GÓC VỚI ĐƯỜNG TRÒN. 1 Góc ở tâm – Số đo cung. 2 Liên hệ giữa cung và dây. 3 Góc nội tiếp. + Dạng 1. Giải bài toán định lượng. + Dạng 2. Giải bài toán định tính. 4 Góc tạo bởi tiếp tuyến và dây cung. + Dạng 1. Giải bài toán định tính. + Dạng 2. Giải bài toán định lượng. 5 Góc có đỉnh ở bên trong đường tròn, góc có đỉnh ở bên ngoài đường tròn. 6 Cung chứa góc. + Dạng 1. Tìm quỹ tích các điểm M tạo thành với hai mút của đoạn thẳng AB cho trước một góc AMB có số đo không đổi bằng α (0◦ < α < 180◦). + Dạng 2. Dựng cung chứa góc α (0◦ < α < 180◦) trên đoạn thẳng AB = a cho trước. + Dạng 3. Sử dụng quỹ tích cung chứa góc chứng minh nhiều điểm cùng nằm trên một đường tròn. + Dạng 4. Toán tổng hợp. 7 Tứ giác nội tiếp. + Dạng 1. Chứng minh tứ giác nội tiếp đường tròn. + Dạng 2. Sử dụng tứ giác nội tiếp giải các bài toán hình học. 8 Đường tròn ngoại tiếp – Đường tròn nội tiếp. 9 Độ dài đường tròn, cung tròn. 10 Diện tích hình tròn, hình quạt tròn. 11 Ôn tập chương III. CHƯƠNG 4 . HÌNH CẦU, HÌNH TRỤ, HÌNH NÓN. 1 Hình trụ. Diện tích xung quanh và thể tích hình trụ. 2 Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt. 3 Hình cầu – Diện tích mặt cầu và thể tích hình cầu. 4 Ôn tập chương IV.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc ở tâm, số đo cung
Tài liệu gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc ở tâm, số đo cung, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. I. TÓM TẮT LÝ THUYẾT 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Định lí. II. BÀI TẬP MINH HỌA Phương pháp giải: Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau: + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. + Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề vị trí tương đối của hai đường tròn
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của hai đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 7 và bài số 8. A. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm. Đường nối tâm (đường thẳng đi qua tâm hai đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: + Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. + Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R và r. + Hai đường tròn cắt nhau. + Hai đường tròn tiếp xúc nhau: Tiếp xúc ngoài; Tiếp xúc trong. + Hai đường tròn không giao nhau: Ở ngoài nhau; (O) đựng (O’); (O) và (O’) đồng tâm. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Nhận biết vị trí tương đối của hai đường tròn. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn. Dạng 2 : Bài tập về hai đường tròn cắt nhau. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Bài tập về hai đường tròn tiếp xúc. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không cắt nhau. C. TRẮC NGHIỆM RÈN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN