Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lượng giác và phương trình lượng giác Toán 11 GDPT 2018

Tài liệu gồm 200 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề hàm số lượng giác và phương trình lượng giác môn Toán 11 chương trình GDPT 2018. Bài 1 . Góc lượng giác. Giá trị lượng giác của góc lượng giác 2. A Góc lượng giác 2. 1. Góc hình học và số đo của chúng 2. 2. Góc lượng giác và số đo của chúng 2. B Giá trị lượng giác của góc lượng giác 2. 1. Đường tròn lượng giác 2. 2. Giá trị lượng giác của góc lượng giác 3. C Giá trị lượng giác của các góc có liên quan đặc biệt 3. D Các dạng toán thường gặp 4. + Dạng 1. Chuyển đổi đơn vị độ – rađian 4. 1. Ví dụ mẫu 4. 2. Bài tập tự luyện 6. 3. Câu hỏi trắc nghiệm 7. + Dạng 2. Độ dài của một cung tròn 9. 1. Ví dụ mẫu 9. 2. Bài tập tự luyện 10. 3. Câu hỏi trắc nghiệm 12. + Dạng 3. Số đo của một góc lượng giác 13. 1. Ví dụ mẫu 14. 2. Bài tập tự luyện 15. 3. Câu hỏi trắc nghiệm 17. + Dạng 4. Biểu diễn góc lượng giác trên đường tròn lượng giác 18. 1. Ví dụ mẫu 19. 2. Bài tập tự luyện 22. 3. Câu hỏi trắc nghiệm 28. + Dạng 5. Tính giá trị lượng giác của góc lượng giác bằng định nghĩa và xét dấu của các giá trị lượng giác 31. 1. Ví dụ mẫu 32. 2. Bài tập tự luyện 34. 3. Câu hỏi trắc nghiệm 36. + Dạng 6. Cho một giá trị lượng giác của góc, tính các giá trị còn lại hay một biểu thức lượng giác 37. 1. Ví dụ mẫu 37. 2. Bài tập tự luyện 39. 3. Câu hỏi trắc nghiệm 41. + Dạng 7. Giá trị lượng giác của các góc có liên quan đặc biệt 43. 1. Ví dụ mẫu 44. 2. Bài tập tự luyện 46. 3. Câu hỏi trắc nghiệm 49. + Dạng 8. Chứng minh đẳng thức lượng giác 52. 1. Ví dụ mẫu 52. 2. Bài tập tự luyện 52. 3. Câu hỏi trắc nghiệm 54. Bài 2 . Các phép biến đổi lượng giác 56. A Tóm tắt lý thuyết 56. 1. Công thức cộng 56. 2. Công thức nhân đôi 56. 3. Công thức hạ bậc 56. 4. Công thức nhân ba 56. 5. Công thức biến đổi tổng thành tích 56. 6. Công thức biến đổi tích thành tổng 56. B Các dạng toán thường gặp 56. + Dạng 1. Áp dụng công thức cộng 56. 1. Ví dụ mẫu 57. 2. Bài tập tự luyện 59. 3. Câu hỏi trắc nghiệm 64. + Dạng 2. Áp dụng công thức nhân đôi, hạ bậc 68. 1. Ví dụ mẫu 68. 2. Bài tập tự luyện 71. 3. Câu hỏi trắc nghiệm 76. + Dạng 3. Công thức biến đổi 78. 1. Ví dụ mẫu 79. 2. Bài tập tự luyện 81. 3. Câu hỏi trắc nghiệm 86. + Dạng 4. Nhận dạng tam giác 95. 1. Ví dụ mẫu 95. 2. Bài tập rèn luyện 95. 3. Câu hỏi trắc nghiệm 97. Bài 3 . Hàm số lượng giác và đồ thị 99. A Kiến thức cần nhớ 99. 1. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn 99. 2. Hàm số y = sin x 99. 3. Hàm số y = cos x 99. 4. Hàm số y = tan x 100. 5. Hàm số y = cot x 100. + Dạng 1. Tìm tập xác định của hàm số lượng giác 101. 1. Ví dụ mẫu 101. 2. Bài tập tự luyện 102. 3. Câu hỏi trắc nghiệm 103. + Dạng 2. Tính chẵn lẻ của hàm số 106. 1. Ví dụ mẫu 106. 2. Bài tập tự luyện 108. 3. Câu hỏi trắc nghiệm 109. + Dạng 3. Sự biến thiên của hàm số lượng giác và các bài toán về đồ thị hàm số lượng giác 111. 1. Ví dụ mẫu 112. 2. Bài tập tự luyện 113. 3. Câu hỏi trắc nghiệm 124. + Dạng 4. Xét tính tuần hoàn và tìm chu kỳ của hàm số lượng giác 128. 1. Ví dụ mẫu 129. 2. Bài tập tự luyện 129. 3. Câu hỏi trắc nghiệm 130. + Dạng 5. Tìm giá trị lớn nhất – giá trị nhỏ nhất 132. 1. Ví dụ mẫu 132. 2. Bài tập tự luyện 134. 3. Câu hỏi trắc nghiệm 136. Bài 4 . Phương trình lượng giác cơ bản 139. A Phương trình tương đương 139. B Phương trình sin x = m 139. C Phương trình cos x = m 140. D Phương trình tan x = m 140. E Phương trình cot x = m 140. + Dạng 1. Điều kiện có nghiệm của phương trình lượng giác cơ bản 140. 1. Ví dụ mẫu 141. 2. Bài tập tự luyện 141. 3. Câu hỏi trắc nghiệm 142. + Dạng 2. Phương trình lượng giác cơ bản 144. 1. Ví dụ mẫu 144. 2. Bài tập tự luyện 146. 3. Câu hỏi trắc nghiệm 155. + Dạng 3. Phương trình đưa về phương trình lượng giác cơ bản 162. 1. Ví dụ mẫu 162. 2. Bài tập tự luyện 164. 3. Câu hỏi trắc nghiệm 171. + Dạng 4. Sự tương giao của các đồ thị hàm số lượng giác 175. 1. Ví dụ mẫu 175. 2. Bài tập tự luyện 175. + Dạng 5. Bài toán thực tế 176. 1. Ví dụ mẫu 176. 2. Bài tập tự luyện 179. 3. Câu hỏi trắc nghiệm 182. Bài 5 . Bài tập cuối chương I 186. A Bài tập tự luận 186. B Bài tập trắc nghiệm ôn tập 189. 1. Đề số 1 189. 2. Đề số 2 190.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lượng giác và phương trình lượng giác - Trần Văn Tài
Tài liệu gồm 137 trang với nội dung gồm các phần: 1. Phương trình lượng giác đưa về bậc hai và bậc cao cùng 1 hàm lượng giác 2. Phương trình lượng giác bậc nhất đối với sin và cosin (phương trình cổ điển) 3. Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4) 4. Phương trình lượng giác đối xứng 5. Một số phương trình lượng giác dạng khác Trong mỗi phần gồm tóm tắt lý thuyết, các dạng toán, ví dụ mẫu và bài tập vận dụng có lời giải chi tiết.
Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.
Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.