Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An

Nội dung Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Cao Xuân Huy Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Đề HSG Toán lớp 8 vòng 2 năm 2022 - 2023 trường THCS Cao Xuân Huy Nghệ An Chào mừng quý thầy cô và các em học sinh lớp 8 đến với đề thi chọn học sinh giỏi cấp trường môn Toán vòng 2 năm học 2022 - 2023 của trường THCS Cao Xuân Huy, Nghệ An. Đề thi bao gồm câu hỏi và đáp án chi tiết để hướng dẫn giải. Dưới đây là một số câu hỏi trong đề thi: Cho x, y là các số hữu tỷ khác 1 thỏa mãn: $\frac{1}{12} x = \frac{1}{12} y$. Chứng minh rằng $M = x^2 + y^2 - xy$ là bình phương của một số hữu tỷ. Cho đa thức f(x). Tìm số dư của phép chia f(x) cho $x(x+1)(x+2)$ biết rằng f(x) chia x-1 dư 7 và f(x) chia x+2 dư 1. Cho tam giác ABC vuông tại A, có đường cao AH và trung tuyến BN. Qua A kẻ đường thẳng vuông góc với BN cắt BN và BC lần lượt tại K và M. Chứng minh rằng: a) $(AK)^2 = AB . AC$ b) $\triangle BKH \sim \triangle BAH$ c) $\frac{MB^2}{BH} = \frac{BC}{2}$ Cho hình vuông có cạnh bằng 2023cm. Bên trong hình vuông, lấy 2022 điểm phân biệt sao cho trong 2026 điểm không có 3 điểm nào thẳng hàng. Chứng minh tồn tại 1 tam giác có diện tích không lớn hơn $\frac{2023}{2} cm^2$ với 3 trong số 2026 điểm đã cho. File WORD dành cho quý thầy cô có thể tải xuống để xem đầy đủ nội dung và đề thi chi tiết. Chúc quý vị và các em học sinh tập trung và làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT An Dương - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện An Dương, thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT An Dương – Hải Phòng : + Giả sử p và q là các số nguyên tố thỏa mãn đẳng thức 2 p p q q. Chứng minh rằng tồn tại số nguyên dương k sao cho 2 p kq q kp. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE AF. Vẽ AH vuông góc với BF (H thuộc BF), đường thẳng AH cắt các đường thẳng DC và BC lần lượt tại hai điểm M và N. 1. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng : AC EF 2. 3. Chứng minh rằng : 2 2 1 AD AM AN. + Một giải bóng chuyền có 9 đội bóng tham gia thi đấu vòng tròn 1 lượt (hai đội bất kỳ chỉ thi đấu với nhau 1 trận). Biết đội thứ nhất thắng 1 a trận và thua 1 b trận, đội thứ 2 thắng 2 a trận và thua 2 b trận, đội thứ 9 thắng 9 a trận và thua 9 b trận. Chứng minh rằng 2 2 2 3 9 a a b b.
Đề khảo sát HSG Toán 8 năm 2022 - 2023 trường THCS Phú Thái - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát đội tuyển học sinh giỏi môn Toán 8 năm học 2022 – 2023 trường THCS Phú Thái, huyện Kim Thành, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát HSG Toán 8 năm 2022 – 2023 trường THCS Phú Thái – Hải Dương : + Phân tích thành nhân tử: 3 333 a b c abc. Áp dụng tìm x biết: 3 3 2 6 xx 211. Tìm số dư trong phép chia của đa thức: xx 1 2 3 6 2023 cho đa thức 2 x 5 7 x. + Cho a, b, c là các số tự nhiên. Chứng minh rằng A = 4a(a + b)(a + b + c)(a + c) + b2c2 là một số chính phương. (Số chính phương là bình phương của một số tự nhiên). Tìm các số nguyên x và y thỏa mãn 3xy + 2y – 2x + 1 = 0. + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại M và N. Chứng minh rằng: 1) AM = BF; 2) Tứ giác AEMD là hình chữ nhật; 3) 2 22 111 AB AM AN.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Đông Hà - Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp THCS môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Đông Hà – Quảng Trị : + Cho các số thực a, b, c, x, y, z thoả mãn x = by + cz, y = ax + cz, z = ax + by và x + y + z khác 0. Tính giá trị của biểu thức 111 Q 1 a 1 b 1 c. + Trong dãy số 13597 … …, mỗi chữ số đứng sau bắt đầu từ chữ số thứ tư bằng chữ số hàng đơn vị của tổng ba chữ số đứng ngay trước nó. Hỏi trong dãy này có chứa dãy 789 không? Có hay không số tự nhiên n để n2 + 2022 là số chính phương? + Cho hình thoi ABCD có 0 BAD 40, O là giao điểm hai đường chéo. Gọi H là hình chiếu vuông góc của O trên cạnh AB. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia DC lấy điểm N sao cho HM song song với AN. a) Chứng minh MBH và ADN đồng dạng. b) Chứng minh MB . DN = OB2. c) Tính số đo MON.
Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Biết rằng đa thức f(x) khi chia cho x – 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x2 + x – 6. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (n thuộc N) đều là các số chính phương thì n chia hết cho 40. + Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác DBF b) Chứng minh rằng: HD HE HF AD BE CF. + Cho tam giác nhọn ABC có đường cao AH. Trên các đoạn AH, AB, AC lần lượt lấy các điểm D, E, F sao cho EDC = FDB = 90 độ (E khác B). Chứng minh: EF // BC.