Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn

Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề dấu hiệu nhận biết tiếp tuyến của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa: Một đường thẳng được gọi là một tiếp tuyến của đường tròn nếu nó chỉ có 1 điểm chung với đường tròn đó. 2. Các định lí: a) Định lí 1: Nếu một đường thẳng a là tiếp tuyến của một đường tròn (O;R) thì nó vuông góc với tiếp tuyến đi qua tiếp điểm. b) Định lí 2: Nếu một đường thẳng a đi qua một điểm của đường tròn (O;R) và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là tiếp tuyến của đường tròn. 3. Các dấu hiệu nhận biết tiếp tuyến của đường tròn. a) Nếu một đường thẳng đi qua 1 điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. b) Nếu khoảng cách từ tâm đường tròn đến đường thẳng bằng bán kính của đường tròn thì đường thẳng đó là tiếp tuyến của đường tròn. c) Nếu một đường thẳng và một đường tròn chỉ có một điểm chung thì đường thẳng đó là tiếp tuyến của đường tròn. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Cách giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: Cách 1: Chứng minh C nằm trên (O) và OC vuông góc với a tại C. Cách 2: Kẻ OH vuông góc với a tại H và chứng minh OH = OC = R. Cách 3: Vẽ tiếp tuyến a’ của (O) và chứng minh a trùng với a’. Dạng 2 : Tính độ dài đoạn thẳng. Cách giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi cấp tốc Đại số 9 - Huỳnh Đức Khánh
Tài liệu gồm 29 trang tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, giúp học sinh ôn tập nhanh kiến thức Toán 9. Nội dung tài liệu : Phần 1. Rút gọn căn số Phần 2. Rút gọn biểu thức Phần 3. Hàm số bậc nhất Phần 4. Hệ phương trình bậc nhất hai ẩn Phần 5. Hàm số bậc hai Phần 6. Phương trình bậc hai Phần 7. Giải bài toán bằng cách lập phương trình – lập hệ phương trình [ads] + Bài toán hình học + Bài toán vận tốc + Bài toán công nhân làm việc – bài toán vòi nước + Bài toán luân chuyển xe + Bài toán tăng năng suất + Một số bài toán khác
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T
Các dạng toán căn bậc ba - Nguyễn Chí Thành
Tài liệu gồm 17 trang tuyển tập các bài toán về chủ đề căn bậc 3  (Chương trình Toán 9 – Tập 1) được giải chi tiết. Các dạng toán gồm có: + Dạng 1. Thực hiện phép tính + Dạng 2. Chứng minh đẳng thức + Dạng 3. So sánh hai căn bậc 3 + Dạng 4. Giải phương trình
Chinh phục Toán 9 bằng sơ đồ tư duy - Phạm Nguyên (Đại số - Tập 2)
Nội dung sách được trình bày theo từng dạng toán. Mỗi bài gồm các phần: A. Tóm tắt kiến thức cần học B. Phương pháp giải các dạng toán Các nội dung chính trong sách: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn 1. Phương trình bậc nhất hai ẩn 2. Hệ hai phương trình bậc nhất hai ẩn 3. Giải hệ phương trình bậc nhất hai ẩn 4. Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn [ads] + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn 1. Hàm số y = ax^2 2. Phương trình bậc hai một ẩn 3. Phương trình quy về phương trình bậc hai 4. Giải toán bằng cách lập phương trình