Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT QG 2019 lần 2 trường chuyên Lê Quý Đôn Quảng Trị

Theo đúng như kế hoạch ôn tập hướng đến kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 đã đề ra từ trước, chiều Chủ Nhật, ngày 19 tháng 05 năm 2019, trường THPT chuyên Lê Quý Đôn, tỉnh Quảng Trị tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm 2019 dành cho học sinh khối 12 của nhà trường. Đề thi thử Toán THPT QG 2019 lần 2 trường chuyên Lê Quý Đôn – Quảng Trị có mã đề 202, đề được biên soạn theo dạng đề trắc nghiệm khách quan, đề gồm 6 trang với 50 câu hỏi và bài toán, mỗi câu trả lời đúng tương ứng với 0.2 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 202, 207, 214, 217. [ads] Trích dẫn đề thi thử Toán THPT QG 2019 lần 2 trường chuyên Lê Quý Đôn – Quảng Trị : + Cho hai mặt phẳng (P) và (Q) song song với nhau. Khẳng định nào sau đây đúng? A. Tồn tại một đường thẳng nằm trong (P) mà song song với mọi đường thẳng nằm trong (Q). B. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q). C. Mọi đường thẳng song song với (Q) đều song song với (P). D. Mọi đường thẳng nằm trong (P) đều song song với (Q). + Bé An luyện tập khiêu vũ cho buổi dạ hội cuối khóa. Bé bắt đầu luyện tập trong 1 giờ vào ngày đầu tiên. Mỗi ngày tiếp theo, bé tăng thêm 5 phút luyện tập so với ngày trước đó. Hỏi sau một tuần, tổng thời gian bé An đã luyện tập là bao nhiêu phút? + Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng 45. Nếu tăng mỗi cạnh đáy thêm 1 thì thể tích sẽ tăng thêm 30, còn nếu tăng cạnh bên thêm 1 thì thể tích sẽ tăng thêm 9. Hỏi nếu tăng đồng thời các cạnh đáy và cạnh bên thêm 1, thì thu được hình hộp mới có thể tích bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2022 – 2023 lần 3 trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương; đề thi có đáp án mã đề 101 102 103 104. Trích dẫn Đề thi thử Toán TN THPT 2023 lần 3 trường chuyên Nguyễn Trãi – Hải Dương : + Cho hàm số bậc ba 3 2 f x ax bx cx d có hai điểm cực trị x = −1 và x = 3. Hình phẳng giới hạn bởi đồ thị hàm số y f x và đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y f x có diện tích bằng 12. Giá trị f f (1) (3) bằng? + Trong hệ tọa độ Oxyz cho điểm A thuộc mặt cầu 2 2 1 (5) 1 S x y z và điểm B thuộc mặt cầu 2 2 9 S x y z. Điểm M thay đổi trên mặt phẳng 2 2 15 0 P x y z. Giá trị nhỏ nhất của biểu thức T MA MB thuộc khoảng nào sau đây? + Cho khối chóp S ABCD có đáy ABCD là hình vuông, SA ABCD và BD a 3 thể tích khối chóp S ABCD bằng 3 2 a (tham khảo hình vẽ bên dưới). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng?
Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm 2023 lần 2 môn Toán cụm trường THPT và trung tâm GDTX huyện Thuận Thành, tỉnh Bắc Ninh; đề thi có đáp án mã đề Đề 101 Đề 102 Đề 103 Đề 104 Đề 105 Đề 106 Đề 107 Đề108 Đề 109 Đề 110 Đề 111 Đề 112 Đề 113 Đề 114 Đề 115 Đề 116 Đề 117 Đề 118 Đề 119 Đề 120 Đề 121 Đề 122 Đề 123 Đề 124; kỳ thi được diễn ra vào chiều thứ Sáu ngày 09 tháng 06 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 lần 2 môn Toán cụm THPT huyện Thuận Thành – Bắc Ninh : + Cho hàm số 432 y f x ax bx cx dx e a b c d e R và 3 y gx x 4 3 có đồ thị như hình vẽ bên. Biết hai đồ thị y f x y gx cắt nhau tại 4 điểm phân biệt có hoành độ 1234 xx thỏa mãn 14 3 xx và xx 14 2 3 4 0 đồng thời diện tích phần gạch chéo trên hình bằng 7 10. Hỏi diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx hx a b c d e 4 nằm trong khoảng nào dưới đây? + Cho hình trụ tròn xoay có hai đáy là hai hình tròn(O;4) và (O′;4). Biết rằng tồn tại dây cung AB của đường tròn O sao cho ∆O’AB là tam giác đều và mặt phẳng (O’AB) hợp với đáy một góc 0 30. Tính diện tích xung quanh xq S của hình nón có đỉnh O′ đáy là hình tròn (O;4). + Trong không gian Oxyz cho hai đường thẳng 2 1 2 20 x xm d y d ym tR zt z t và điểm K (8;-1;0). Biết rằng tồn tại đường thẳng ∆ đi qua điểm K vuông góc với 2 đường 1 2 d d đồng thời thỏa mãn d d d d d Oz (1 2 ∆). Hỏi có tất cả bao nhiêu giá trị thực của m thỏa mãn?
Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Hải Đảo - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán trường THPT Hải Đảo, tỉnh Quảng Ninh; đề thi có đáp án trắc nghiệm mã đề 201. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán trường THPT Hải Đảo – Quảng Ninh : + Trên tập hợp các số phức, cho biết phương trình 2 4 0 c z z d (với c d và phân số c d tối giản) có hai nghiệm 1 2 z z. Gọi A B lần lượt là các điểm biểu diễn hình học của 1 2 z z trên mặt phẳng Oxy. Biết tam giác OAB đều, giá trị của biểu thức P cd 2 5 bằng? + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và AC a. Biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy; góc giữa đường thẳng SD và mặt phẳng đáy bằng 0 60. Khoảng cách giữa hai đường thẳng AD và SC bằng? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình 1 2 1 x t y t z t và điểm A(1;2;3). Mặt phẳng (P) chứa d sao cho dAP lớn nhất. Khi đó tọa độ vectơ pháp tuyến của mặt phẳng (P) là?
Đề thi thử TN THPT 2023 môn Toán lần 3 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 3 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 3 trường chuyên Hạ Long – Quảng Ninh : + Trên tập số phức, xét phương trình (là tham số thực). Tổng các giá trị 2 2 z 2mz m m 8 0 m của m để phương trình đó có hai nghiệm phân biệt và hai điểm biểu diễn trên mặt phẳng phức 1 2 z z 1 2 z z cùng với gốc tọa độ tạo thành một tam giác có diện tích bằng là 3? + Cho hình trụ có tâm của hai đáy là và bán kính O O đáy bằng a, chiều cao bằng 2a. Hai điểm M N lần lượt nằm trên hai đường tròn đáy và sao cho (O) (O’) đường thẳng MN tạo với mặt phẳng đáy một góc 60. Khoảng cách từ tâm O đến mặt phẳng (MNO’) bằng? + Cho số phức z x yi (x y) thỏa mãn (là tham x my (mx y) i 2 5m (4m 3)i m số thực). Biết rằng khi thay m đổi, biểu thức P z 6 8i đạt giá trị lớn nhất có dạng a b (với là các a b số nguyên dương). Giá trị của a b bằng?