Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT Điện Bàn Quảng Nam

Nội dung Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT Điện Bàn Quảng Nam Bản PDF - Nội dung bài viết Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT Điện Bàn Quảng Nam Đề cuối học kì 1 (HK1) lớp 8 môn Toán năm 2023 2024 phòng GD ĐT Điện Bàn Quảng Nam Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra cuối học kỳ 1 môn Toán lớp 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Điện Bàn, tỉnh Quảng Nam. Đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán lớp 8 năm 2023 – 2024 phòng GD&ĐT Điện Bàn – Quảng Nam: 1. Dữ liệu nào sau đây thuộc loại số liệu rời rạc? A. Chiều cao của các bạn học sinh lớp 8A. B. Cân nặng của các bạn học sinh lớp 8B. C. Thời gian tự học ở nhà mỗi ngày của các bạn học sinh lớp 8C. D. Số thành viên trong gia đình của các bạn học sinh lớp 8D. 2. Biểu đồ dưới đây cho biết số lượt khách quốc tế đến Việt Nam giai đoạn 2017 – 2020: a) Hãy lập bảng thống kê cho dữ liệu được biểu diễn trong biểu đồ trên. b) So với năm 2019, số lượt khách quốc tế đến Việt Nam trong năm 2020 giảm đi bao nhiêu phần trăm? Em hãy cho biết vì sao lại giảm nhiều đến như vậy? 3. Cho ∆ABC vuông tại A. Gọi E, M lần lượt là trung điểm của AB, BC. a) Giả sử AC = 8cm. Tính độ dài đoạn thẳng ME. b) Gọi F là trung điểm của AC. Chứng minh AEMF là hình chữ nhật. c) Gọi I là giao điểm của ME và BF; J là giao điểm của CE và BF. Tính tỉ số BI BJ. File WORD (dành cho quý thầy, cô): ... Hãy thực hiện bài thi một cách cẩn thận và tỉ mỉ. Chúc các em đạt kết quả tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội : + Cho tam giác ABC cân tại A có đường cao AD. Lấy điểm H thuộc đoạn thẳng AD, gọi K là điểm đối xứng với điểm H qua điểm D 1) Tứ giác BHCK là hình gì? Vì sao? 2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M. Chứng minh rằng: KM HC. 3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N. Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC 8cm BH 5cm. 4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P. Chứng minh tỉ số HP PC không đổi khi điểm H di chuyển trên đường cao AD. + Cho x y z là các số khác 0 thỏa mãn x y z 0 và xy yz zx xyz 3. Tính giá trị biểu thức 3 3 3 yz x xz y xy z A x yz xy z xyz. + Cho hai biểu thức 2 1 1 x A x và 2 3 6 4 1 1 1 x x B x x x với x x 1 1 1) Tính giá trị của A khi x 6. 2) Rút gọn B. 3) Đặt P A B. Tìm tất cả các giá trị nguyên âm của x để P nhận giá trị là số nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Cho tam giác ABC đường phân giác BD. Từ D kẻ đường thẳng song song với AB cắt BC tại E. Từ D kẻ đường thẳng song song với BC cắt AB tại F. a) Chứng minh tứ giác BEDF là hình thoi. b) Vẽ M đối xứng với F qua B. Tứ giác BDEM là hình gì? Vì sao? c) Lấy N đối xứng với E qua B. Chứng minh tứ giác MNFE là hình chữ nhật. d) Lấy P là một điểm bất kì trên đường thẳng BD, Q là điểm đối xứng với P qua A. Khi P chạy trên đường thẳng BD cố định thì Q chạy trên đường thẳng cố định nào? + Cho biểu thức 2 2 3 3 2 3 6 2 2 2 4 x x x x P x x x x a) Rút gọn biểu thức P. b) Tính các giá trị của biểu thức P khi x 3 c) Tìm các giá trị nguyên của x để biểu thức P đạt giá trị nguyên. + Tìm giá trị lớn nhất của biểu thức 2 2020 2021 x C.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Công Trứ – Hà Nội : + Giữa hai điểm A và B là một hồ nước sâu. Biết A B lần lượt là trung điểm của MC MD (xem hình vẽ). Bạn An đi từ C đến D với vận tốc 180 m/phút hết 2 phút 30 giây. Hỏi hai điểm A và B cách nhau bao nhiêu mét? + Cho ABC cân tại A, trung tuyến AH. Lấy điểm D đối xứng với A qua H. a) Chứng minh rằng: Tứ giác ABDC là hình thoi. b) Qua A kẻ đường thẳng vuông góc với AH cắt tia DC tại E. Tứ giác ABCE là hình gì ? Vì sao ? c) Tìm điều kiện của ABC để tứ giác ABCE là hình thoi ? d) Gọi I là trung điểm của AE. Chứng minh rằng : AC BE HI đồng quy. + Cho biểu thức 2 2 x B x x. a) Tính giá trị biểu thức B khi x 3. b) Rút gọn biểu thức 2 2 1 1 A 2 4 2 2 x x x x x. c) Cho biểu thức P A B. Tìm x nguyên để biểu thức P đạt giá trị nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Trãi, quận Hà Đông, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Cho ∆ ABC vuông tại A (AB > AC). Gọi O là trung điểm BC. Lấy D đối xứng với A qua O. a) Chứng minh. Tứ giác ABDC là hình chữ nhật b) Cho AC = 6cm; AD = 10cm. Tính diện tích tứ giác ABDC c) Lấy E đối xứng với D qua BC. Từ E kẻ đường thẳng vuông góc với AB đường này cắt BC tại F. Chứng minh EFDB là hình thoi d) Chứng minh CE vuông góc với EB. + Cho biểu thức 2 2 5 1 3 2 3 6 2 x A x x x x x và 7 2 B x với 2 x a) Tính giá trị của biểu thức B khi 2 x 4 0 b) Rút gọn A c) Tìm x nguyên để biểu thức P A B có giá trị nguyên. + Cho a b c là các số dương thỏa mãn 3 3 3 a b c abc 3. Hãy tính giá trị của biểu thức 2020 2020 2020 2020 2020 2020.