Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang

Nội dung Đề HSG cấp huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Đề Thi HSG Cấp Huyện Lớp 7 Môn Toán Năm 2022 - 2023 Phòng GD&ĐT Lục Ngạn Bắc Giang Xin chào quý thầy cô và các em học sinh lớp 7! Dưới đây là đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán lớp 7 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Hãy cùng xem qua một số câu hỏi trong đề thi nhé: Cho một nhóm Địa y phát triển trên một khoảng đất hình tròn và có mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y theo công thức: d = 7t − 12 (với t ≥ 12). Biết vào năm 2022, đường kính của một nhóm Địa y là 42mm, hãy tính xem băng trên dòng sông đó đã tan vào năm nào? Trong tam giác vuông cân MNP ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. Hãy chứng minh rằng HMN = KPM và MAP là tam giác cân với AH vuông góc AK. Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bể là 34 cm. Hãy tính thể tích của tiểu cảnh đó. Hy vọng rằng các em sẽ làm tốt các câu hỏi trong đề thi này. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.
Đề Olympic Toán 7 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5 : 6 : 7 nhưng sau đó chia theo tỉ lệ 4 : 5 : 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho ∆ABC có AB AC vẽ đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AE AB. a) Chứng minh: BD DE. b) Gọi K là giao điểm của AB và ED. Chứng minh rằng: DBK DEC. c) ∆ABC cần có thêm điều kiện gì để D cách đều ba cạnh của ∆AKC. + Ông Nam gửi ngân hàng 100 triệu, lãi suất 8%/năm. Hỏi sau 36 tháng số tiền cả gốc và lãi thu được là bao nhiêu? (Biết nếu tiền lãi không rút ra thì tiền lãi đó sẽ nhập vào vốn để tính lãi cho các kì hạn tiếp theo).
Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Yên Bình - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Bình, tỉnh Yên Bái (đề chính thức và đề dự bị); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 28 tháng 11 năm 2022. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Yên Bình – Yên Bái : + Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p + 1 chia hết cho 6. + Trong hình bên, cho Ax // By. Biết A = 35o và O = 80o. Tính góc B. + Một ngôi nhà có các kích thước như hình vẽ. a) Tính thể tích phần không gian được giới hạn bởi ngôi nhà. b) Hỏi phải dùng bao nhiêu lít sơn để sơn phủ được mặt ngoài ngôi nhà? Biết rằng 1 lít sơn bao phủ được 8 m2 tường (không sơn cửa) và tổng diện tích các cửa là 25 m2.
Đề khảo sát HSG Toán 7 đợt 1 năm 2022 - 2023 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh giỏi môn Toán 7 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2022. Trích dẫn Đề khảo sát HSG Toán 7 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho p là số nguyên tố lớn hơn 3 thỏa mãn 10p + 1 cũng là số nguyên tố. Chứng minh rằng 5p + 1 chia hết cho 6. + Tìm tất cả các cặp số nguyên x, y sao cho xy – 2x + y + 1 = 0. + Cho góc vuông xOy, trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA > OB. Qua A kẻ đường thẳng vuông góc với Ox, qua B kẻ đường thẳng vuông góc với Oy. Hai đường thẳng này cắt nhau ở C. a) Chứng minh AC vuông góc BC b) Kẻ phân giác của góc OAC cắt BC tại D, kẻ phân giác góc OBC cắt OA tại E. Chứng minh AD // BE.