Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Du Lâm Đồng

Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Du Lâm Đồng Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du Đề thi chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du Chào các thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 trường THCS Nguyễn Du, thành phố Đà Lạt, tỉnh Lâm Đồng. Kỳ thi sẽ diễn ra vào ngày 21 tháng 10 năm 2023, và đề thi sẽ bao gồm cả đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán lớp 9 năm 2023 - 2024 trường THCS Nguyễn Du - Lâm Đồng: Bạn An mua một số quyển vở và bút máy hết tất cả là 102 nghìn đồng. Biết giá mỗi quyển vở là 12 nghìn đồng, giá mỗi cây bút là 10 nghìn đồng. Hỏi bạn An mua được bao nhiêu quyển vở và bao nhiêu cây bút? Định mức giá điện sinh hoạt năm 2021 như sau: - Số điện (kWh) Giá bán điện (đồng/kWh) - Bậc 1: Từ 0 – 50 kWh 1.678 - Bậc 2: Từ 51 – 100 kWh 1.734 - Bậc 3: Từ 101 – 200 kWh 2.014 - Bậc 4: Từ 201 – 300 kWh 2.536 - Bậc 5: Từ 301 – 400 kWh 2.834 - Bậc 6: Từ 401 kWh trở lên 2.927. Tiền điện được tính theo bậc, với thuế giá trị gia tăng (GTGT) 10%. a) Trong tháng 6/2021, nhà bạn Xuân sử dụng hết 230 kWh điện. Tính tiền điện nhà bạn Xuân phải trả. b) Cũng trong tháng đó, nhà bác Hạ đã phải trả 548,680 đồng tiền điện. Hỏi nhà bác Hạ đã sử dụng hết bao nhiêu kWh điện? Từ tấm nhôm hình vuông cạnh 6 dm, người ta muốn cắt một hình thang để diện tích hình thang cắt được nhỏ nhất. Tìm tổng x+y để diện tích hình thang cắt được nhỏ nhất. Như vậy, đề thi năm nay sẽ đòi hỏi sự nhanh nhẹn, logic và kiến thức vững chắc từ các em học sinh. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Như Thanh - Thanh Hoá
Đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Như Thanh – Thanh Hoá : + Tìm tất cả số nguyên tố p sao cho 4p2 + 1 và 6p2 + 1 đều là các số nguyên tố. + Cho nửa đường tròn tâm O đường kính AB = 2R. EF là dây cung di động trên nửa đường tròn sao cho E thuộc cung AF và EF = AB/2. Gọi H là giao điểm của AF, BE, C là giao điểm của AE, BF, I là giao điểm của CH, AB. 1. Chứng minh rằng tam giác ACI và tam giác ABE đồng dạng với nhau. 2. Đường thẳng AF cắt tiếp tuyến tại B ở N, các tiếp tuyến tại A, F của (O) cắt nhau ở M. Chứng minh: ON MB. 3. Xác định vị trí EF trên nửa đường tròn để tứ giác ABEF có diện tích lớn nhất. + Cho a, b, c là các số thực dương thỏa mãn: abc = 1. Hãy tìm giá trị nhỏ nhất của biểu thức P.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Gio Linh - Quảng Trị
Đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 23 tháng 10 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Gio Linh – Quảng Trị : + Tìm số tự nhiên n sao cho n2 + 2n + 30 là số chính phương. + Cho tứ giác ABCD. Qua B, vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt DC tại E. Chứng minh rằng: Diện tích tam giác ADE bằng diện tích tứ giác ABCD. + Cho tam giác ABC có AB < AC, phân giác AD. Gọi E là trung điểm của BC. Qua E, vẽ đường thẳng song song với DA, đường thẳng này cắt các đường thẳng AB, AC lần lượt tại G và F. Chứng minh rằng: BG = FC.
Đề thi HSG Toán 9 cấp huyện năm 2021 - 2022 phòng GDĐT Tân Kỳ - Nghệ An
Đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Hai ngày 18 tháng 10 năm 2021. Trích dẫn đề thi HSG Toán 9 cấp huyện năm 2021 – 2022 phòng GD&ĐT Tân Kỳ – Nghệ An : + a) Chứng minh rằng với mọi số tự nhiên n thì n3 + 11n chia hết cho 6. b) Giải phương trình c) Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 – y2 = 4x + 3. + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường thẳng vuông góc với BC tại B cắt AC tại D. a) Chứng minh rằng: AH2 = HB.HC và BH.BC = AD.AC. b) Chứng minh c) Cho góc nhọn a và sin a = 2/3. Tính P. + Cho 7 điểm phân biệt nằm bên trong hình vuông ABCD có cạnh bằng 10. Chứng minh rằng có ít nhất một điểm trong hình vuông đã cho (có thể nằm trên cạnh của hình vuông) sao cho khoảng cách từ nó đến 7 điểm đã cho đều lớn hơn 2,5.
Đề thi HSG Toán 9 cấp thị xã năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
Đề thi HSG Toán 9 cấp thị xã năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.