Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kì 1 Toán 10 năm 2022 - 2023 trường THPT Đô Lương 1 - Nghệ An

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng cuối học kì 1 môn Toán 10 năm học 2022 – 2023 trường THPT Đô Lương 1, tỉnh Nghệ An; đề thi gồm 35 câu trắc nghiệm (70% số điểm) và 03 câu tự luận (30% số điểm), thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề cuối kì 1 Toán 10 năm 2022 – 2023 trường THPT Đô Lương 1 – Nghệ An : + Một đề thi cuối kỳ 1 gồm 35 câu hỏi trắc nghiệm và 3 bài tự luận. Khi làm đúng mỗi câu trắc nghiệm sẽ được 0,2 điểm, làm đúng mỗi câu tự luận được 1 điểm. Giả sử bạn An làm đúng x câu hỏi trắc nghiệm và y bài tự luận. Viết một bất phương trình bậc nhất hai ẩn x và y để đảm bảo bạn An được ít nhất 8 điểm. + Cho mẫu số liệu sau: 156 158 160 162 164 Nếu bổ sung hai giá trị 154 và 167 vào mẫu số liệu thì so với mẫu ban đầu : A. Trung vị không thay đổi, số trung bình thay đổi. B. Trung vị thay đổi, số trung bình không thay đổi. C. Trung vị và số trung bình đều thay đổi. D. Trung vị và số trung bình đều không thay đổi. + Thu nhập theo tháng (đơn vị: triệu đồng) của các công nhân trong một công ty được cho như sau: Thu nhập 4,0 4,5 5,5 6,0 7,0 7,5 8,0 8,5 9,5 10 11 12 13 Tần số 1 1 1 1 2 1 2 1 2 1 1 1 1 N = 16 a. Tính thu nhập trung bình theo tháng của công nhân công ty này. b. Trong đại dịch Covid-19 công ty có chính sách hỗ trợ 0 0 25 công nhân có thu nhập thấp nhất. Số nào trong các tứ phân vị giúp xác định được các công nhân trong diện được hỗ trợ? Tính giá trị tứ phân vị đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm học 2019 - 2020 sở GDĐT Vĩnh Phúc
Chiều thứ Hai ngày 16 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng học kỳ 1 môn Toán 10 năm học 2019 – 2020, nhằm đánh giá kết quả học tập môn Toán của học sinh khối 10 trong giai đoạn HK1 vừa qua. Đề thi học kỳ 1 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc có mã đề 132, đề thi gồm có 2 trang với 10 câu trắc nghiệm (chiếm 30% tổng số điểm) và 7 câu tự luận (chiếm 70% tổng số điểm), thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Điều kiện cần và đủ để AB = CD là các vectơ AB và CD thỏa mãn: A. cùng phương, cùng độ dài. B. cùng hướng. C. cùng độ dài. D. cùng hướng, cùng độ dài. + Trong các câu sau, câu nào là mệnh đề? A. Tiết trời mùa thu thật dễ chịu! B. Số 15 không chia hết cho 2. C. Bạn An có đi học không? D. Chúc các bạn học sinh thi đạt kết quả tốt! [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;4), B(2;-3), C(1;-2) và D(-1;3m + 3). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Tìm m để ba điểm A, B, D thẳng hàng. + Cho Parabol (P) có phương trình y = f(x) = ax^2 + bx + c và có đồ thị như hình vẽ. Tính giá trị f(-2). + Cho tam giác ABC, gọi M là trung điểm BC, điểm I thỏa mãn 2IA + IB + IC = 0. Chứng minh I là trung điểm AM.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường Đinh Tiên Hoàng - TP HCM
Đề thi HK1 Toán 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM gồm 30 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường Đinh Tiên Hoàng – TP HCM : + Cho parabol (P) có dạng: y = ax2 + bx + c (a khác 0). Viết phương trình (P) biết (P) đi qua 3 điểm M(1;2), N(2;11), P(3;6). + Cho phương trình x^2 – x + m – 2 = 0. a) Tìm m để phương trình có hai nghiệm trái dấu. b) Với giá trị m nào thì phương trình có hai nghiệm phân biệt x1, x2 sao cho x1 = 3×2. + Trong mặt phẳng Oxy, cho ba điểm A(0;5); B(2;1); C(8;4). a) Chứng minh ba điểm A, B, C tạo thành một tam giác. b) Tìm tọa độ trung điểm của các cạnh AB, AC, BC. Tìm tọa độ điểm G với G là trọng tâm tam giác ABC. c) Tính cosAB.AC. d) Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. e) Tìm tọa độ điểm E biết BE = 3AC – 2BC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường chuyên Nguyễn Huệ - Hà Nội
Thứ Bảy ngày 14 tháng 12 năm 2019, trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Nguyễn Huệ – Hà Nội mã đề 103 gồm có 05 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường chuyên Nguyễn Huệ – Hà Nội : + Trong một lớp học có 100 học sinh, 35 học sinh chơi bóng đá và 45 học sinh chơi bóng chuyền, 10 học sinh chơi cả hai môn thể thao. Hỏi có bao nhiêu học sinh không chơi môn thể thao nào? (Biết rằng chỉ có hai môn thể thao là bóng đá và bóng chuyền). + Cho tam giác ABC. Điểm M thỏa mãn AB + AC = 2AM. Chọn khẳng định đúng? A. M là trung điểm của BC. B. M trùng với B hoặc C. C. M trùng với A. D. M là trọng tâm tam giác ABC. + Cho tam giác ABC, trọng tâm G, gọi I là trung điểm BC, M là điểm thoả mãn: 2|MA + MB + MC| = 3|MB + MC|. Khi đó tập hợp điểm M là: A. Đường trung trực của BC. B. Đường trung trực của IG. C. Đường tròn tâm I, bán kính BC. D. Đường tròn tâm G, bán kính BC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Dương Văn Dương - TP HCM
Đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Dương Văn Dương, thành phố Hồ Chí Minh gồm 01 trang với 07 câu tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Dương Văn Dương – TP HCM : + Ông A có một miếng đất hình vuông. Ông khai hoang mở rộng thêm một bề 8m, một bề 12m thành một miếng đất hình chữ nhật (như hình vẽ). Sau khi mở rộng diện tích của miếng đất tăng thêm 3136 m2. Tính độ dài các cạnh của miếng đất sau khi ông A khai hoang mở rộng? + Trong mặt phẳng Oxy, cho ba điểm 𝐴(−3;3), 𝐵(4;4) và C(1;3). a) Tìm tọa độ điểm G là trọng tâm tam giác ABC. b) Tìm tọa độ điểm 𝑁 thỏa mãn AN = NB – 3BC. c) Tìm tọa độ điểm M thuộc trục tung để tam giác ABM vuông tại M. + Xác định parabol (P): 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, biết (P) có đỉnh 𝐼(2;1) và cắt trục hoành tại điểm có hoành độ 𝑥 = 3.