Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra định kỳ lần 1 lớp 10 môn Toán năm 2019 2020 sở GD ĐT Bắc Ninh

Nội dung Đề kiểm tra định kỳ lần 1 lớp 10 môn Toán năm 2019 2020 sở GD ĐT Bắc Ninh Bản PDF Sáng thứ Ba ngày 17 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra định kỳ lần 1 môn Toán lớp 10 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 10 trong giai đoạn học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 1 Toán lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề thi có 1 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra định kỳ lần 1 Toán lớp 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC, biết A(-2;1), B(4;0), C(2;3). a. Tìm tọa độ trung điểm I của AB và tọa độ trọng tâm G của tam giác ABC. b. Cho D(m;2). Tìm m để ba điểm A, B, D thẳng hàng. [ads] + Cho tam giác ABC. Gọi I là trung điểm của AB và E thuộc cạnh AC sao cho EC = 2EA. a. Chứng minh rằng EA – EB = BI – AI. b. Hãy xác định điểm M thỏa mãn: 5AC – 3BC + 12MA = 0. + Cho hàm số y = x^2 + 2x – 3 (1). a. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (1). b. Tìm tọa độ giao điểm của đường thẳng d: y = x – 3 với đồ thị (P) của hàm số (1).

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2018 - 2019 trường THPT Thăng Long - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh khối 10 đề thi học kì 1 Toán 10 năm 2018 – 2019 trường THPT Thăng Long – Hà Nội.
Đề thi học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT chuyên ĐHSP - Hà Nội
Đề thi học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội mã đề 209 gồm 2 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, chiếm 3 điểm, phần tự luận gồm 4 câu, chiếm 7 điểm, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2018, đề nhằm kiếm tra, đánh giá năng lực học Toán của học sinh khối 10 trong giai đoạn học kỳ 1 của năm học 2018 – 2019. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội : + Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây? + Cho hình bình hành ABCD, với AB = 2, AD = 1, góc BAD = 60°. Tính các tích vô hướng AB.AD, BA.BC và độ dài hai đường chéo AC, BD của hình bình hành. + Cho hàm số y = x^2 – 4x + 3. Xác định khoảng đồng biến, khoảng nghịch biến và lập bảng biến thiên của hàm số trên. Vẽ parabol (P): y = x^2 – 4x + 3 (nêu rõ trục đối xứng và toạ độ đỉnh của parabol).
Đề thi học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT Bến Tre - Vĩnh Phúc
Đề thi học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT Bến Tre – Vĩnh Phúc gồm 10 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 10 : + Phát biểu nào sau đây là sai? A. Véc tơ là đoạn thẳng có hướng B. Hai véc tơ cùng hướng thì cùng phương C. Véc tơ – không cùng phương với mọi véc tơ D. Hai véc tơ cùng phương thì cùng hướng + Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A(-1;3), B(2;4), C(2;-1) a) Tìm tọa độ trọng tâm G của tam giác ABC b) Tìm tọa độ điểm M thỏa mãn: vtMA + vtMB + vtMC = 0 c) Chứng minh 3 điểm B, M, G thẳng hàng [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Để tứ giác T là một hình vuông điều kiện cần là nó có bốn cạnh bằng nhau B. Một tam giác là đều khi và chỉ khi có nó có hai trung tuyến bằng nhau và một góc 60 độ C. Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh bằng nhau D. Một tứ giác là hình chữ nhật khi và chỉ khi nó có ba góc vuông
Đề thi khảo sát HK1 Toán 10 năm học 2017 - 2018 trường THPT Đức Thọ - Hà Tĩnh
Đề thi khảo sát HK1 Toán 10 năm học 2017 – 2018 trường THPT Đức Thọ – Hà Tĩnh gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi khảo sát HK1 Toán 10 : + Trên hệ tọa độ (O; i; j) cho tam giác ABC với tọa độ ba đỉnh là: A(3; -1), B(2; 5), C( 2; 1). a) Tính tọa độ các vectơ AB và AC b) Tính độ dài trung tuyến AM của tam giác ABC (M là trung điểm của BC) c) Tìm điểm N trên đường thẳng y = x +1 sao cho AN = 5 + Cho hàm số y = (m – 2)x^2 + 3x + 3 (1). a) Lập bảng biến thiên, vẽ đồ thị hàm số (1) khi m = 2. b) Tìm các giá trị của m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt. [ads] + Cho tam giác ABC. Điểm M thỏa mãn hệ thức vectơ 2MA – MB – 3CM = AB + AC. Chọn khẳng định đúng. A. Hai véc tơ AM và AC cùng hướng. B. Hai véc tơ AM và AB cùng hướng. C. Hai véc tơ AM và BC cùng hướng. D. Hai véc tơ AM và BC ngược hướng.