Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán năm 2020 2021 trường THPT chuyên Lam Sơn Thanh Hóa

Nội dung Đề thi vào 10 môn Toán năm 2020 2021 trường THPT chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn Thanh Hóa Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn Thanh Hóa Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề thi vào lớp 10 môn Toán năm 2020 - 2021 của trường THPT chuyên Lam Sơn - Thanh Hóa. Đề thi bao gồm đáp án và lời giải chi tiết, kỳ thi diễn ra vào ngày 17 tháng 07 năm 2020. Dưới đây là một số trích dẫn nổi bật từ đề thi: 1. Trên một đường tròn người ta lấy 2024 điểm phân biệt, các điểm được tô màu xanh và màu đỏ xen kẽ nhau. Tại mỗi điểm ta ghi một số thực khác 0 và 1 sao cho quy tắc số ghi tại điểm màu xanh bằng tổng của hai số ghi màu đỏ kể nó và số ghi màu đỏ bằng tích của hai số ghi tại hai điểm màu xanh kế nó. Yêu cầu tính tổng của 2024 số đó. 2. Cho tam giác ABC nhọn có BAC > 45 độ. Về phía ngoài tam giác ABC dựng các hình vuông ABMN và ACPQ. Đường thẳng AQ cắt đoạn thẳng BM tại E, đường thẳng AN cắt đoạn thẳng CP tại F. Phần câu hỏi được chia thành ba phần nhỏ, bạn hãy tự nghiên cứu và giải quyết từng phần một. 3. Chứng minh rằng nếu \(2^n = 10a + b\) với \(a\), \(b\), \(n\) là các số tự nhiên thỏa mãn \(0 < b < 10\) và \(n > 3\) thì \(ab\) chia hết cho 6. Chúc các em học sinh sẽ có cơ hội thể hiện tài năng và kiến thức trong kỳ thi quan trọng này. Hi vọng đề thi sẽ giúp các em rèn luyện và nâng cao kỹ năng giải quyết bài toán Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2022 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm 2022 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 sở GD&ĐT Bình Phước : + Một khu vườn hình chữ nhật có chiều dài lớn hơn chiều rộng là 6m. Tính chiều rộng và chiều dài khu vườn biết diện tích khu vườn là 280m2. + Cho tam giác ABC vuông tại A có AC = 12cm, B = 60°. Hãy tính C, AB, BC và diện tích tam giác ABC. + Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến SA, SB (A, B là các tiếp điểm). Kẻ đường kính AC của đường tròn (O), đường thẳng BC cắt đường tròn (O) tại điểm D (D khác C). a) Chứng minh tứ giác SAOB nội tiếp đường tròn. b) Chứng minh SA = SC.SD. c) Kẻ BH vuông góc với AC tại điểm H. Chứng minh đường thẳng SC đi qua trung điểm của đoạn thẳng BH.
Đề tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội (đề thi dành cho tất cả các thí sinh / đề Toán điều kiện / đề Toán chung / đề Toán vòng 1); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Hoàng Việt – Trịnh Đình Triển – Khôi Hà – Nguyễn Văn Hoàng – Nguyễn Khang). Trích dẫn đề tuyển sinh vào lớp 10 năm 2022 trường THPT chuyên KHTN – Hà Nội : + Trên bàn có 8 hộp rỗng (trong các hộp không có viên bi nào). Người ta thực hiện các lần thêm bi vào các hộp theo quy tắc sau: mỗi lần chọn ra 4 hộp bất kỳ và bỏ vào 1 hộp 1 viên, 1 hộp 2 viên, 2 hộp còn lại 3 viên. Hỏi số lần thêm bi ít nhất có thể để nhận được số bi ở 8 hộp trên là 8 số tự nhiên liên tiếp? + Cho hình chữ nhật ABCD (AB < AD) nội tiếp trong đường tròn (O). Trên cạnh AD lấy hai điểm E và F (E và F không trùng với A và D) sao cho E nằm giữa A và F, đồng thời ∠ABE + ∠DCF = 1 2 ∠BOC. 1) Chứng minh rằng BE cắt CF tại một điểm nằm trên đường tròn (O). 2) Đường thẳng qua O ∥ BC cắt BE và CF lần lượt tại M và N. Chứng minh rằng ∠D AM + ∠ADN + 1 2 ∠AOD = 180o. 3) Dựng hình chữ nhật MNPQ sao cho NQ ∥ BD và MP ∥ AC. Chứng minh rằng đường tròn (MNPQ) tiếp xúc với (O). + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức: 25y2 + 354x + 60 = 36×2 + 305y + (5y − 6x)2022.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (03 điểm) và 05 câu tự luận (07 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Bảy ngày 04 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi gồm 04 câu trắc nghiệm (02 điểm) và 06 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào Chủ Nhật ngày 05 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Cho Parabol (P): y = x2 và đường thẳng d: y = -2x + m – 1 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt Parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) sao cho. + Một phân xưởng theo kế hoạch phải may 900 bộ quần áo trong một thời gian quy định, mỗi ngày phân xưởng may được số bộ quần áo là như nhau. Khi thực hiện, do cải tiến kỹ thuật nên mỗi ngày phân xưởng may thêm được 10 bộ quần áo và hoàn thành kế hoạch trước 3 ngày. Hỏi theo kế hoạch, mỗi ngày phân xưởng may được bao nhiêu bộ quần áo? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB < AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là chân các đường cao) đồng quy tại điểm H. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK. a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn. b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK. c) Giả sử hai đỉnh B, C cố định trên đường tròn (O; R) và đỉnh A di động trên cung lớn BC của đường tròn (O; R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.